浸渍提拉法制备TiO2/不锈钢中空纤维复合膜及其应用
作者:高佳明,马晓华,汤初阳,许振良,庄黎伟,魏永明,杨虎,李金荣,宋振,郑鹤立
单位: 1 西陇科学股份有限公司,广东,汕头 515000;2 化学工程国家重点实验室,华东理工大学膜科学与工程研发中心,上海 200237
关键词: 不锈钢复合膜;二氧化钛;浸渍提拉法;油水分离
出版年,卷(期):页码: 2020,40(3):55-64

摘要:
大孔无机膜基底的表面改性,一般采用溶胶-凝胶法以求表面均匀性。但是溶胶-凝胶法合成工艺复杂,控制因素较多,限制了其在工业领域的应用。利用悬浮液体系改性不锈钢中空纤维膜,采用浸渍提拉法在不锈钢膜表面涂覆25nm的TiO2粒子,通过500℃的高温烧结制备了TiO2/不锈钢中空纤维复合膜。研究了PVA和TiO2浓度对不锈钢中空纤维膜的形貌,孔径,纯水通量和抗污染性能的影响。结果表明,我们制备的TiO2功能层具有超亲水和水下超疏油性,对BSA的截留达到90%,油水乳液分离率超过99%,并且具有良好的分离性能和抗污染性能。
The surface modification of the microporous inorganic membrane substrate is usually carried out by sol-gel method. However, the sol-gel synthesis process is complex and controlled by many factors, which limits its application in industry. In this paper, the suspension system was used to modify stainless steel hollow fiber membranes. Titanium dioxide particles of 25 nm were coated on the surface of stainless steel membranes by dip-coating method. The composite membranes of TiO2/stainless steel hollow fiber were prepared by high temperature sintering at 500 ℃. The effects of Polyvinyl alcohol and TiO2 concentration on the morphology, pore size, pure water flux and anti-pollution properties of stainless steel hollow fiber membranes were studied. The results showed that the TiO2 functional layer was super-hydrophilic and underwater super-hydrophobic. The rejection of BSA was 90%, and the rejection of oil-water emulsion was over 99%, which had good separation and antifouling properties.
第一作者:高佳明(1994-),男,硕士研究生。 通讯作者:马晓华,E-mail:xiaohuama@ecust.edu.cn。

参考文献:
[1] Kayvani A F, Mckay G, Buekenhoudt A, et al. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination[J]. Materials, 2018, 11(1).
[2] Wang J-W, Li N-X, Li Z-R, et al. Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers[J]. Ceramics International, 2016, 42(7): 8949-54.
[3] Wang M, Huang M L, Cao Y, et al. Fabrication, characterization and separation properties of three-channel stainless steel hollow fiber membrane[J]. Journal of Membrane Science, 2016, 515: 144-53.
[4] Wang M, Zhong Q F, Xu Z L, et al. Modification of porous stainless steel hollow fibers by adding TiO 2 , ZrO 2 and SiO 2 nano-particles[J]. Journal of Porous Materials, 2016, 23(3): 773-82.
[5] Jones C D, Fidalgo M, Wiesner M R, et al. Alumina ultrafiltration membranes derived from carboxylate–alumoxane nanoparticles[J]. Journal of Membrane Science, 2001, 193(2): 175-84.
[6] Defriend K A, Wiesner M R, Barron A R. Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles[J]. Journal of Membrane Science, 2003, 224(1): 11-28.
[7] Nishiyama N, Dong H P, Koide A, et al. A mesoporous silica (MCM-48) membrane: preparation and characterization[J]. Journal of Membrane Science, 2001, 182(1): 235-44.
[8] Hao S, Lin T, Ning S, et al. Research on cracking of SiO2 nanofilms prepared by the sol-gel method[J]. Materials Science in Semiconductor Processing, 2019, 91: 181-7.
[9] Wu J C-S, Cheng L-C. An improved synthesis of ultrafiltration zirconia membranes via the sol–gel route using alkoxide precursor[J]. Journal of Membrane Science, 2000, 167(2): 253-61.
[10] Van Gestel T, Hauler F, Bram M, et al. Synthesis and characterization of hydrogen-selective sol–gel SiO2 membranes supported on ceramic and stainless steel supports[J]. Separation and Purification Technology, 2014, 121: 20-9.
[11] Wu L Q, Huang P, Xu N, et al. Effects of sol properties and calcination on the performance of titania tubular membranes[J]. Journal of Membrane Science, 2000, 173(2): 263-73.
[12] Gunatilake U B, Bandara J. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh[J]. Chemosphere, 2017, 171: 134-41.
[13] Tang W, Peng Z, Li L, et al. Porous stainless steel supported magnetite crystalline membranes for hexavalent chromium removal from aqueous solutions[J]. Journal of Membrane Science, 2012, 392(s 392–393): 150-6.
[14] Li Z, Qiu N, Yang G. A sol–gel-derived α-AlO crystal interlayer modified 316L porous stainless steel to support TiO, SiO, and TiO–SiO hybrid membranes[J]. Journal of Materials Science, 2011, 46(9): 3127-35.
[15] Lu D, Cheng W, Zhang T, et al. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion[J]. Separation and Purification Technology, 2016, 165: 1-9.
[16] Liu R, Raman A K Y, Shaik I, et al. Inorganic microfiltration membranes incorporated with hydrophilic silica nanoparticles for oil-in-water emulsion separation[J]. Journal of Water Process Engineering, 2018, 26: 124-30.
[17] LEE, LEE, N. H, et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols[J]. Materials Science & Engineering B (Solid-State Materials for Advanced Technology), 2006, 129(1-3): 109-15.
[18] Guo H, Zhao S, Wu X, et al. Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration[J]. Microporous and Mesoporous Materials, 2018, 260: 125-31.
[19] Fu W, Zhang X, Mao Y, et al. A novel γ-Al2O3 nanofiltration membrane via introducing hollow microspheres into interlayers for improving water permeability[J]. Ceramics International, 2018, 44(13): 15824-32.
[20] Chen X, Zou D, Lin Y, et al. Enhanced performance arising from low-temperature preparation of α-alumina membranes via titania doping assisted sol-gel method[J]. Journal of Membrane Science, 2018, 559: 19-27.
[21] 高佳明 王, 马晓华, 许振良. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-86.
[22] Ping L, Feng W, Gao X, et al. Immobilization of TiO 2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants[J]. Journal of Hazardous Materials, 2012, 227-228(227): 185-94.
[23] Baker R W. Membrane technology and applications[M]. edition., Wiley, 2012, 72-89.
[24] Wang M, Cao Y, Xu Z L, et al. Facile Fabrication and Application of Superhydrophilic Stainless Steel Hollow Fiber Microfiltration Membranes[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(11).
[25] Chen X. Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials[J]. Journal of Materials Science Letters, 2002, 21(21): 1637-9.
[26] Hdidar M, Chouikhi S, Fattoum A, et al. Influence of TiO 2 rutile doping on the thermal and dielectric properties of nanocomposite films based PVA[J]. Journal of Alloys & Compounds, 2018, 750: S0925838818311435.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号