溴化聚苯醚超滤膜的表面亲水改性
作者:胡虹,董君,林小城
单位: 1. 南京科技职业学院 生物与环境学院,南京,210048;2. 福州大学 石油化工学院,福州,350108
关键词: 超滤膜;蛋白质;表面亲水改性;一步法;抗污染;溴化聚苯醚
出版年,卷(期):页码: 2020,40(2):22-29

摘要:
先以溴化聚苯醚(BPPO)为基体,利用相转化法制备超滤膜,再用聚乙烯亚胺(PEI)作为改性剂,对BPPO膜进行一步法表面亲水改性。表征结果表明,PEI的接枝对膜具有较好的交联作用,随着接枝程度的提高,膜的纯水通量从125 LMH下降至90 LMH,但截留能力随之提高,表现为剪切分子量从270 kDa下降至157 kDa。同时,随着PEI接枝量的提高,膜表面亲水的胺基含量不断提高,膜的亲水性和抗污能力随之提高。实验表明:改性膜经牛血清蛋白(BSA)溶液污染后,其纯水通量恢复率最高可达89%,相比BPPO基膜提高了约40%。
To improve anti-fouling performance of ultrafiltration membrane especially for protein separation, base ultrafiltration membrane was firstly prepared using brominated poly (phenylene oxide) (BPPO) polymer as starting material by phase inversion method, followed by directly one-step surface hydrophilic modification by polyethyleneimine (PEI). It was found that the membrane was effectively crosslinked by the grafted PEI, resulting in the weaken decrease in the pure water flux but significant improvement in the rejection. Moreover, the grated PEI could introduce abundant hydrophilic amine groups to improve the anti-fouling performance of the resultant ultrafiltration membrane. Specially, the flux recovery ratio could reach up to 89% after BSA fouling, which was 40% increase of the BPPO base membrane.
第一作者简介:胡虹(1977),女,四川广安,教授,清洁化工与环境治理研究方向,E-mail:hhu@njpi.edu.cn 通讯作者,E-mail:xclin@fzu.edu.cn

参考文献:
[1] Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications [J]. Desalination;356:15-30.
[2] Ravanchi MT, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review [J]. Desalination;235(1-3):199-244.
[3] Mutamim NSA, Noor ZZ, Hassan MAA, et al. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review [J]. Desalination;305(none)
[4] Zydney AL. Protein Separations Using Membrane Filtration: New Opportunities for Whey Fractionation [J]. Int Dairy J, 1998;8(3):243-50.
[5] Zhang C-H, Yang F-l, Wang W-J, et al. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol) [J]. Sep Purif Technol, 2008;61(3):276-86.
[7] M?ckel D, Staude E, Guiver MD. Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes [J]. J Membr Sci, 1999;158(1):63-75.
[7] Sadana A. Protein adsorption and inactivation on surfaces. Influence of heterogeneities [J]. Chem Rev, 1992;92(8):1799-818.
[8] Hilal N, Ogunbiyi OO, Miles NJ, et al. Methods employed for control of fouling in MF and UF membranes: a comprehensive review. Sep Sci Technol [J], 2005;40(10):1957-2005.
[9] Jeyachandran Y, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces [J]. Langmuir 2009;25(19):11614-20.
[10] Fang F, Szleifer I. Effect of molecular structure on the adsorption of protein on surfaces with grafted polymers [J]. Langmuir 2002;18(14):5497-510.
[11] Lensun L, Smith TA, Gee ML. Partial denaturation of silica-adsorbed bovine serum albumin determined by time-resolved evanescent wave-induced fluorescence spectroscopy [J]. Langmuir 2002;18(25):9924-31.
[12] Kim J, Somorjai GA. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy [J]. J Am Chem Soc, 2003;125(10):3150-58.
[13] Ying P, Jin G, Tao Z. Competitive adsorption of collagen and bovine serum albumin—effect of the surface wettability [J]. Colloids Surf, B, 2004;33(3):259-63.
[14] Tyszler D, Zytner RG, Batsch A, et al. Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification [J]. Desalination 2006;189(1):119-29.
[15] Gancarz I, Po?niak G, Bryjak M. Modification of polysulfone membranes: 3. Effect of nitrogen plasma [J]. Eur Polym J, 2000;36(8):1563-69.
[16] Reddy A, Mohan DJ, Bhattacharya A, et al. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties [J]. J Membr Sci, 2003;214(2):211-21.
[17] Ma X, Su Y, Sun Q, et al. Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly (vinyl alcohol) [J]. J Membr Sci, 2007;300(1):71-78.
[18] Susanto H, Ulbricht M. Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance [J]. Langmuir 2007;23(14):7818-30.
[19] Xu J, Wang Z, Wang J, et al. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting [J]. Desalination 2015;365:398-406.
[20] Yang L, Tang B, Wu P. UF membrane with highly improved flux by hydrophilic network between graphene oxide and brominated poly(2,6-dimethyl-1,4-phenylene oxide) [J]. J Mater Chem A, 2014;2(43):18562-73.
[21] Chinpa W, Quémener D, Bèche E, et al. Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol) [J]. J Membr Sci, 2010;365(1):89-97.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号