分子模拟研究气体在四种膜材料中的分离行为
作者:高缨佳,姚辉,贝鹏志,于丹,周定一,刘红晶
单位: 1.沈阳工业大学 石油化工学院,辽阳 111003;2.中国石油天然气股份有限公司辽河石化分公司,盘锦124022
关键词: 分子模拟技术;气体分离膜;CO2/N2
出版年,卷(期):页码: 2020,40(3):72-80

摘要:
本文利用分子模拟技术,从分子水平上研究CO2/N2在四种常见高分子膜材料中的渗透机理与分离性能。通过分子动力学方法和蒙特卡罗方法对材料的微观性质和CO2/N2在四种材料中的溶解扩散过程进行模拟计算。将计算结果与文献值对比,结果显示具有一致性。材料的微观作用决定材料在气体分离方面的宏观性能,计算结果从微观角度揭示了材料分子结构的自由体积尺寸越大,气体在材料中的扩散性能越强;而材料中空穴的数量越多,气体在材料中的溶解性能越好。计算结果表明本文模拟的两种橡胶态聚合物具有高灵活性的分子链和较小的内聚能密度,而本文模拟的两种玻璃态聚合物则与之相反,这使得CO2/N2在两种橡胶态聚合物中的渗透性能大于其在两种玻璃态聚合物的渗透性能。
In this paper, the molecular simulation technique has been used to investigate CO2/N2 separation properties and separation mechanism in four kinds of common polymer membranes . Using MD and GCMC method, the properties?of?membranes was stimulated and the solution and diffusion processes of CO2/N2 in four kinds of polymer membranes were obtained. The values caculated are in good agreement with the experimental results. The results show that the gas diffusion coefficients in membrane materials increases with the increase of free volume size.The gas solubility coefficients in materials increases with the more hole. The microscopic properties of the materials are the key factors that determine the macroscopic properties of the material. Since the rubbery polymers have more flexible chain and smaller cohesive energy density than the glassy polymers,the permeability coefficients of CO2/ N2 in the rubbery polymers is greater than those in the glassy polymers.
第一作者简介:高缨佳(1996-),女,辽宁辽阳,硕士,气体分离膜,E-mail:1057694072@qq.com通讯作者,E-mail:liuhongjing_101@126.com

参考文献:
[1] Shimizu A, Kondo M, Yamamoto J. Gas separation membrane[J]. Membrane Technology, 2017, 2002(11): 12-14.
[2] Nejad M N, Asghari M, Afsari M. Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review[J]. Chembioeng Reviews, 2016, 3(6): 276-298.
[3] 谭婷婷, 展侠, 冯旭东, et al. 高分子基气体分离膜材料研究进展[J]. 化工新型材料, 2012, 40(10): 4-5.
[4] Mannan H A, Mukhtar H, Murugesan T, et al. Recent Applications of Polymer Blends in Gas Separation Membranes[J]. Chemical Engineering & Technology, 2013, 36(11): 1838-1846.
[5] Sanders D F, Smith Z P, Guo R, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review[J]. Polymer, 2013, 54(18): 4729-4761.
[6] Farnam M, Mukhtar H, Mohd Shariff A. A Review on Glassy Polymeric Membranes for Gas Separation[J]. Applied Mechanics & Materials, 2014, 625:701-703.
[7] Lock S S M, Lau K K, Shariff A M, et al. Thickness dependent penetrant gas transport properties and separation performance within ultrathin polysulfone membrane: Insights from atomistic molecular simulation[J]. Journal of Polymer Science Part B Polymer Physics, 2018, 56(2): 131-158.
[8] Altintas C, Keskin S. Molecular simulations of porous coordination network-based mixed matrix membranes for CO2/N2 separations[J]. Molecular Simulation, 2015, 41(16): 1-13.
[9] Sterescu D M, Stamatialis D F, Wessling M. Boltorn-modified polyimide gas separation membranes[J]. Journal of Membrane Science, 2008, 310(1): 512-521.
[10] 和小奇, 朱腾阳, 王淑敏, et al.含PDMS聚砜膜的制备及其对CO2/CH4分离性能的影响[J]. 化工新型材料, 2018, 46(9): 97-100.
[11] Guizard C, Boutevin B, Guida F, et al. VOC vapour transport properties of new membranes based on cross-linked fluorinated elastomers[J]. Separation & Purification Technology, 2001, 22(1-3): 23-30.
[12] Golzar K, Amjad-Iranagh S, Amani M, et al. Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes[J]. Journal of Membrane Science, 2014,451:117-134.
[13] Basu S , Cano A . Asymmetric Matrimid?/[Cu3(BTC)2] mixed-matrix membranes for gas separations[J]. Journal of Membrane Science, 2010, 362(1):478-487.
[14] Ahn J , Chung W J,Pinnau I , et al. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science,2008,314 : 123–133.
[15] Thareja P , Velankar S S . Interfacial activity of particles at PI/PDMS and PI/PIB interfaces: analysis based on Girifalco–Good theory[J]. Colloid & Polymer Science, 2008, 286(11):1257-1264.
[16] Lin G , Abar M , Vane L M . Mixed Matrix Silicone and Fluorosilicone/Zeolite 4A Membranes for Ethanol Dehydration by Pervaporation[J]. Separation Science and Technology, 2013, 48(4):523-536.
[17] 伍艳辉, 张海峰, 李明, et al. 6FDA型聚酰亚胺中气体溶解行为的分子模拟[J]. 化工学报, 2009, 60(3): 762-768.
[18] 朱娜娜, 高会元. 杂化聚酰亚胺膜对CO2/N2气体渗透性能的模拟[J]. 膜科学与技术, 2016, 36(6): 47-52.
[19] Jiao S, Duan C, Xu Z. Water under the Cover: Structures and Thermodynamics of Water Encapsulated by Graphene[J]. Scientific Reports, 2015, 7(1):1-19.
[20] Khawaja M, Sutton A P, Mostofi A A. Molecular Simulation of Gas Solubility in Nitrile Butadiene Rubber[J]. Journal of Physical Chemistry B, 2016, 121(1): 287-297.
[21] Khan M M, Filiz V, Emmler T, et al. Free Volume and Gas Permeation in Anthracene Maleimide-Based Polymers of Intrinsic Microporosity[J]. Membranes, 2015, 5(2): 214-227.
[22] Castromu?oz R, Fíla V. Progress on Incorporating Zolites in Matrimid?5218 Mixed Matrix Membranes towards Gas Separation:[J]. Membranes, 2018, 8(2):30.
[23] Naderi A , Yong W F , Xiao Y , et al. Effects of chemical structure on gas transport properties of polyethersulfone polymers[J]. Polymer, 2017, 135:76–84.
[24] Fried J. R., Li B. Molecular Simulation of Gas Sorption and Diffusion in Silicon-Based Polymers[J]. Advanced Materials for Membrane Separations, 2004,24–38.
[25] Charati S G , Stern S A . Diffusion of Gases in Silicone Polymers:Molecular Dynamics Simulations[J]. Macromolecules, 1998, 31(16):5529-5535.
[26] Soroko I , Sairam M , Livingston A G . The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice[J]. Journal of Membrane Science, 2011, 381(1-2):152-162
[27] Hyun-Joon Kim, Hong S I . Gas Permeabilities of CO2 and CH4 for Polysulfones Substituted with Bromo and Trimethylsilyl Groups[J]. Korean Journal of Chemical Engineering, 2000, 17(1):122-127.
[28] David Ramírez-Gutiérrez, Draghi C N , Pannacci N , et al. Surface Photografting of Acrylic Acid on Poly(dimethylsiloxane). Experimental and Dissipative Particle Dynamics Studies[J]. Langmuir, 2015, 31(4):1400-1409.
[29] Gómez-Antón M.R., Masegosa R.M., A. Horta,Polymethyltrifluoropropylsiloxane: polymer-solvent interaction, solubility and network swelling[J].Polymer,1987,28(12):2116-2121.
[30] Bozdogan A.E. A method for determination of thermodynamic and solubility parameters of polymers from temperature and molecular weight dependence of intrinsic viscosity[J]. Polymer, 2004,45(18):6415-6424.
[31] Rahmati M, Modarress H, Gooya R. Molecular simulation study of polyurethane membranes[J]. Polymer, 2012, 53(9): 1939-1950.
[32] Li X , Wang M , Wang S , et al. Constructing CO2 transport passageways in Matrimid membranes using nanohydrogels for efficient carbon capture[J]. Journal of Membrane Science, 2015, 474:156-166.
[33] Choi S H, Lee M K, Oh S J, et al. Gas sorption and transport of ozone-treated polysulfone[J]. Journal of Membrane Science, 2003, 221(1): 37-46.
[34] Kubica P , Wolinska-Grabczyk A , Grabiec E , et al. Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles[J]. Microporous and Mesoporous Materials, 2016, 235:120-134.
[35] Charati S G , Stern S A . Diffusion of Gases in Silicone Polymers:Molecular Dynamics Simulations[J]. Macromolecules, 1998, 31(16):5529-5535.
[36] Stern S A, Shah V M, Hardy B J. Structure Permeability Relationships in Silicone Polymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 1987, 25(6): 1263-1298.
[37] 黄宇, 刘庆林. 分子模拟研究小分子在聚硅氧烷中扩散行为[J]. 厦门大学学报(自然版), 2006, 45(5): 664-669.
[38] Stern S A . Polymers for gas separations: the next decade[J]. Journal of Membrane Science, 1994, 94(1):1-65.
[39] Duthie X, Kentish S, Powell C, et al. Operating temperature effects on the plasticization of polyimide gas separation membranes[J]. Journal of Membrane Science, 2007, 294(1-2): 40-49.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号