海藻酸钠修饰磁性纳米粒子驱动液及其正渗透分离性能
作者:池如镜,王志超,张梦博,朱凯浩,曹冬昀,杜春慧
单位: 浙江工商大学 环境科学与工程学院,杭州 310018
关键词: 磁性纳米粒子;海藻酸钠;正渗透;驱动液
出版年,卷(期):页码: 2020,40(4):72-79

摘要:
通过微乳液共混沉淀法制备了海藻酸钠(SA)修饰的四氧化三铁(Fe3O4)磁性纳米粒子Fe3O4-SA,该粒子具有良好的分散性和磁响应性。采用红外、透射电镜、磁滞回线和热失重等对磁性纳米粒子的结构和性能进行表征,同时对该磁性纳米粒子与去离子水的混合液作为驱动液时的正渗透(FO)分离性能进行了测试。结果表明,SA成功包覆在Fe3O4粒子表面,粒子的粒径约为20 nm左右,80 g/L的Fe3O4-SA磁性纳米粒子与去离子水的混合液渗透压达到1270 mOSM/L,以此混合液作为FO过程的驱动液时,渗透通量可以达到2.04 L/(m2·h),并且该驱动液具有较低的反向溶质通量,当驱动液浓度为80 g/L时,其数值约为 0.04 g/(m2·h),大大低于NaCl和SA的反向溶质通量,这说明该驱动液具有较好的正渗透分离性能。
Fe3O4-SA magnetic nanoparticles with good dispersibility and magnetic response were prepared by emulsification blending precipitation method. The structure and performance of the magnetic nanoparticles were characterized by the infrared spectroscopy, transmission electron microscopy, hysteresis loops and thermogravimetric analysis, and at the same time the forward osmosis performance of FO using Fe3O4-SA magnetic nanoparticles as the draw solution was also investigated. The results showed that SA was coated successfully on the surface of Fe3O4 particles and the nanoparticle size is about 20nm. The osmotic pressure of 80 g/L Fe3O4-SA aqueous solution reached 1270 mOSM/L. When 8 wt% Fe3O4-SA aqueous solution was used as the draw solution for the FO process, the permeation flux could reach 2.04 L/(m2·h). Fe3O4-SA aqueous solution had low reverse solute flux, its value was 0.04 g/(m2·h) which was much lower than those of NaCl and SA when the concentrations were 80g/L. These phenomena suggested that this magnetic nanoparticle had good forward osmosis separation performance.
第一作者简介:池如镜(1998-),女,浙江温州人,在读本科生,环境工程专业,E-mail: 909547405@qq.com 通讯作者,E-mail: chunhuidu@zjgsu.edu.cn

参考文献:
[1] 尉凤珍. 正渗透技术研究综述及应用展望[J]. 工业水处理, 2017, 037(010):16-18,47.
[2] Safari J, Zarnegar Z. Magnetic nanoparticle supported ionic liquid as novel and effective heterogeneous catalyst for synthesis of substituted imidazoles under ultrasonic irradiation[J]. Cheminform, 2013, 144(9):1389-1396.
[3] 李青连, 韩丽娜, 常丽萍,等. 磁性纳米材料在污水中重金属离子处理中的究进展[J]. 现代化工, 2016, 36(9):28-31.
[4] Bai H, Liu Z, Sun D D, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination[J]. Sep. Purif. Technol. 2011, 81:392-399.
[5] Ge Q, Su J, Chung T S, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes[J]. Ind. Eng. Chem. Res. 2011, 50:382-388.
[6] Na Y, Yang S, Lee S. Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis[J]. Desalination, 2014, 347:34–42.
[7] Ma B, Wang S, Cao S, et al. Biological nitrogen removal from sewage via anammox: recent advances[J]. Bioresource Technology, 2016, 200:981-990.
[8] Fu K M, Li H, Zhou H T, et al. Optimization of the nitrogen removal performance on the CANON process in a biofilm reactor: from FBBR to MBBR[J]. Environmental Science, 2018, 39(5):2256-2264.
[9] 王清, 朱世侦, 杨文娟,等. 磁性四氧化三铁海藻酸钠复合物吸附剂去除水溶液中的Cr(VI). 西华师范大学学报(自然科学版), 2017, 38(3):282-286.
[10] 孙俊芝, 王静霞, 倪茂君,等. 改性海藻酸钠微球对Pb2+吸附性能的研究[J]. 环境科学与技术, 2019, 42(07):100-104+110.
[11] 颜秋平, 李富荣, 汤顺清,等. 新型磁性海藻酸钠复合微球的制备与表征. 材料科学与工程学报, 2005, 23(5):587-589.
[12] 刘继伟. 功能性海澡酸复合微球的制备研究[D]. 2010.
[13] 盘茂东. 反相乳液-凝胶法制备海藻酸钙凝胶微球及载药试验研究[D]. 2009.
[14] Zarnegar Z, Safari J. Magnetic nanoparticles supported imidazolium-based ionic liquids as nanocatalyst in microwave-mediated solvent-free Biginelli reaction[J]. Journal of Nanoparticle Research, 2014, 16(8):2509.
[15] Cao K T, Jiang Z Y, Zhao J, et al. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides[J]. Journal of Membrane Science, 2014, 469.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号