低成本超薄复合膜用于不同溶液体系钒电池的性能研究
作者:赵丽娜,何虹祥,赵焕,刘建国,严川伟
单位: 中国科学院金属研究所,辽宁,沈阳,110016
关键词: 复合隔膜;全钒液流电池;混酸体系;低成本
出版年,卷(期):页码: 2020,40(4):92-98

摘要:
全钒液流电池是最具可行性的大规模储能技术之一。低成本高性能隔膜的开发是钒电池研发及工程化的热点和焦点。基于混酸(H2SO4+HCl)的钒溶液体系在提高电池性能与扩大运行温区方面表现出实际可行性。本文采用廉价的聚烯烃微孔膜作为支撑体,全氟磺酸离子交换树脂作为复合相,设计并制备了成本低、机械强度高、性能优异的超薄液流电池复合膜。研究了复合膜氢离子传导、钒离子渗透、电池性能在硫酸和盐酸不同体系下性能影响。结果表明:25μm复合膜具有较高的机械强度和较低的溶胀率;在混酸钒溶液体系(1.5 mol?L-1 VOSO4+1.5 mol?L-1 H2SO4+2.5mol?L-1HCl)的电池性能优异:100mA/cm2,EE80%。同时,复合膜具有较低的成本(仅为40-60元/m2),具有应用前景。
All Vanadium redox flow battery(VRFB) is one of the most feasible large-scale energy storage technologies for renewable power generation of wind and solar power. The development of low-cost and high-performance membrane is the focus of VRFB research and engineering. The mixed acid (H2SO4 + HCl) vanadium solution system has showed practical feasibility in improving battery performance and expandingoperating temperature range.The performance of the membrane in different vanadium electrolyte need to be studied to accelerate energy storageapplication of VRFB. In this paper, with commercial and cheap polyolefin microporous membrane as support and perfluorosulfonic acid ion exchange resin as composite phase, a new type of ultra-thin composite membrane for VFRB was designed and prepared.
The ion conduction, vanadium ion permeation and battery performance in different systems of sulfuric acid and hydrochloric acid were studied. The results show that the composite membrane represented high mechanical strength and low swelling rate. The battery performance of the composite membrane in the mixed solution of sulfuric acid and hydrochloric acid is excellent: 100mA / cm2, EE80%. At the same time, the composite membrane has a lower cost (only 40-50$/m2). This low cost, high performance composite membrane showed a promising prospect for VRFB application.
第一作者:赵丽娜(1982-),女,辽宁锦州人,硕士,助理研究员,研究方向新能源材料开发,E-mail:zhaolina0327@163.com。 通讯作者:刘建国(1978-),副研究员,E-mail:jgliu@imr.ac.cn。

参考文献:
[1] J Liu, J G Zhang, Z Yang, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid[J]. Advanced Functional Materials, 2013, 23(8): 929-946.
[2] 丁亮, 侯剑秋, 杨正金等.基于细菌纤维素的阳离子交换膜在水系有机液流电池中的应用研究[J], 膜科学与技术, 2019, 39(6): 1-7.
[3] C Ding, H. M. Zhang, X. F. Li, et al. Vanadium Flow Battery for Energy Storage: Prospects and Challenges[J]. Journal of Physical Chemistry Letters, 2013, 4(8): 1281-1294.
[4] C. Fabjan, J. Garche, B. Harrer, et al. The vanadium redox-battery: An efficient storage unit for photovoltaic systems[J], ElectrochimicaActa, 2001, 47(5): 825-831.
[5] 吴雄伟, 刘俊, 谢浩等. 全钒液流电池碳电极材料的研究进展[J], 中国科学: 化学, 2014, 44(28): 1280-1288.
[6] D. Reed, E. Thomsen, B. Li, et al. Stack Developments in a kW Class All Vanadium Mixed Acid Redox Flow Battery at the Pacific Northwest National Laboratory[J], Journal of The Electrochemical Society,2016, 163 (1) : A5211-A5219 .
[7]王保国.电化学能源转化膜与膜过程研究进展[J], 膜科学与技术, 2020-01-17.
[8] 陆地, 聂峰, 薛立新.全钒液流电池的质子传导膜研究进展, 膜科学与技术, 2014, 34(6): 112-121.
[9] S. Seo, B. Kim, K. Sung, et al. Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications[J], Journal of Membrane Science, 2013, 428: 17-23.
[10] D Mu, L H Yu, L W Yu, et al. Toward Cheaper Vanadium Flow Batteries: Porous Polyethylene Reinforced Membrane with Superior Durability[J], ACS Applied Energy Materials, 2018, 1: 1641-1648.
[11] H. Wei, Y. M. Liu, W. G. Xu, et al. Communication-Polyethylene/PBI Pore-Filling Composite Membrane for High Performance Vanadium Redox Flow Battery[J], Journal of The Electrochemical Society, 2019, 166 (14) :A3207-A3209.
[12] N. Kausar, R. Howe, M. Skyllas-Kazacos. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes[J], Journal ofApplied Electrochemistry, 2001, 31(12): 1327-1332.
[13] 张代双, 彭桑珊, 肖武等.全钒液流电池用致密皮层非对称AEM结构优化[J], 膜科学与技术, 2019, 39(3): 1-7.
[14]S. Zhong, M. Skyllas-Kazacos. Electrochemical-Behavior of Vanadium(V)Vanadium(lV) redox couple at graphite-electrodes[ J], Journal ofPower Sources, 1992, 39: 1-9.
[15] M. Skyllas, M. Cheng, M. Skyllas-Kazacos, Vanadium redox cell electrolyte optimization studies[J], Journal of Applied Electrochemistry, 1990, 20(3): 463-467.
[16] S. Kim, M. Vijayakumar, W Wang,et al. Chloride supporting electrolytes for all-vanadium redox flow batteries[J], Physical Chemistry Chemical Physics, 2011, 13(40): 18186-18193.
[17] Y D Yang, Y M Zhang, T Liu, et al. Improved broad temperature adaptability and energy density of vanadium redox ?ow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte[J], Journal of Power Sources, 2019, 415: 62-68.
[18] 谭宁, 黄可龙, 刘素琴. 全钒液流电池隔膜在钒溶液中的性能[J], 电源技术, 2004, 28( 12) : 775-778.
[19] 王文红, 王新东. 全钒液流电池荷电状态的分析与监测[J], 浙江工业大学学报, 2006, 34( 2) : l19-122.
[20] 中华人民共和国国家能源局, NB/T 42080-2016,全钒液流电池用离子传导膜测试方法[S]. 北京,中国电力出版社, 2017.
[21] 胡继文,许凯,沈家瑞.锂离子电池隔膜的研究与开发[J], 高分子材料科学与工程, 2003, 19(1): 215-219.
[22] Y. H. Luan, Y. M. Zhang, L Li, et al. Perfluorosulfonicionomer Solution inN,N-dimethylformamide[J], Journal of Applied Polymer Science, 2008, 107(5): 2892-2898.
[23] Y. H. Luan, H. Zhang, Y. M. Zhang, et al. Study on structural evolution of perfluorosulfonic ionomer from concentratedDMF-based solution to membranes[J], Journal of Membrane Science, 2008, 319: 91-101.
[24] 尚方剑. 燃料电池用全氟磺酸质子交换膜制备与性能研究[D]. 上海:上海交通大学,2010.
[25] LSu, D S Zhang, S S Peng, et al. Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery[J], International Journal of Hydrogen Energy, 2017, 42(34): 21806-21816.
[26] X. Yang, Q. Ye, P. Cheng, et al. Effects of the electric field on ion crossover in vanadium redox flowbatteries[J], Applied Energy, 2015, 145: 306-319.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号