三通道毛细管复合纳滤膜改进及其性能的研究
作者:孙晶莹,张海珍,穆彤,许振良
单位: 化学工程联合国家重点实验室,化学工程研究所膜科学与工程研发中心,华东理工大学化工学院,上海 200237
关键词: UiO-66-NH2;界面聚合;纳滤膜;表面活性剂
出版年,卷(期):页码: 2020,40(5):31-38

摘要:
 以哌嗪(PIP)/聚乙烯亚胺(PEI)与UiO-66-NH2为水相体系,均苯三甲酰氯(TMC)为有机相,采用界面聚合法制备了荷正电三通道毛细管复合纳滤膜,讨论了UiO-66-NH2的添加量对所制备纳滤膜形貌和性能的影响。采用红外光谱(ATR-FTIR)、扫描电镜(SEM)、原子力显微镜(AFM)、水接触角测量仪(WCA)、Zeta电位仪等对膜进行了表征。结果表明,UiO-66-NH2颗粒的加入,使得纳滤膜表面产生大量的褶皱,表面积增加,亲水性增强,渗透性能得以改善。当添加量为0.005 wt%时,纳滤膜M-2纯水通量111 Lm-2h-1MPa-1。将所制备的纳滤膜M-2用于阳离子表面活性剂模拟废水的分离,该膜对十六烷基三甲基溴化铵的截留率高于95%,对阳离子表面活性剂显示良好的去除能力。
 Positive charged three-channel capillary thin-film composite (TFC) nanofiltration (NF) membrane was prepared via interfacial polymerization using PEI, PIP and UiO-66-NH2 as aqueous monomers and TMC as organic monomers. The effects of different UiO-66-NH2 additive amounts on the structure and performance of the prepared membrane were discussed. The NF membranes were characterized by Fourier infrared spectroscopy (ATR-RTIR), scanning electron microscopy (SEM), AFM, water contact angle and Zeta potential. The results showed that adding UiO-66-NH2 nanoparticles resulted in a large number of folds on the membrane surface, which increased surface area, enhanced hydrophilicity and improved permeability. When the additive amount was 0.005wt %, pure water flux of NF membrane M-2 was 111 Lm-2h-1 MPa-1, which can be used for the separation of cationic surfactant simulated wastewater. NF membrane M-2 for hexadecyl trimethylammonium bromide was higher than 95%, showing a good removal ability to cationic surfactants.
孙晶莹(1995-),女,江苏江阴,研究生在读,主要从事纳滤膜制备及其水处理研究工作。

参考文献:
 [1]Lechuga M, Fernandez-Serrano M, Jurado E, et al. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms[J]. Ecotox Environ Safe, 2016, 125:1-8.
[2]Palmer M, Hatley H. The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review[J]. Water Res, 2018, 147:60-72.
[3]叶雪. 表面活性剂废水对环境的危害及其处理技术[J]. 四川化工, 2019, 22(3):11-13.
[4]Fryczkowska B, Przywara L. The application of composite GO/PAN membranes for removing surfactants from laundry wastewater[J]. Desalin Water Treat, 2019, 157:259-265.
[5]Kowalska I. Surfactant separation in pressure-driven membrane processes[J]. Environ Prot Eng, 2008, 34 (2):105-113.
[6]Vezzani D, Bandini S. Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes[J]. Desalination, 2002, 149(1-3):477-483.
[7]Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[8]侯影飞, 王金凤, 刘敏. PVA/PEI复合纳滤膜的制备及性能优化[J]. 膜科学与技术, 2016, 36(06):53-60.
[9]Saleem H, Zaidi S J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review [J]. Desalination, 2020, 475.
[10]Sorribas S, Gorgojo P, Tellez C, et al. High Flux Thin Film Nanocomposite Membranes Based on Metal-Organic Frameworks for Organic Solvent Nanofiltration[J]. J Am Chem Soc, 2013, 135(40): 15201-15208.
[11]He Y R, Tang Y P, Ma D C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. J Membrane Sci, 2017, 541:262-270.
[12]Zhang H Z, Xu Z L, Tang Y J, et al. Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer[J]. J Membrane Sci, 2017, 527:111-120.
[13]仲华, 谢浩然, 马晓华,等. UIO-66-NH2渗透汽化复合膜制备及乙醇脱水[J]. 膜科学与技术, 2019, 39(03):79-86.
[14]Zhu J Y, Hou J W, Yuan S S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance[J]. J Mater Chem A, 2019, 7(27):16313-16322.
[15]Zhou B W, Zhang H Z, Xu Z L,et al. Interfacial polymerization on PES hollow fiber membranes using mixed diamines for nanofiltration removal of salts containing oxyanions and ferric ions[J]. Desalination, 2016, 394:176-184.
[16]刘天晴, 郭荣, 沈明,等. SDS和CTAB水溶液中胶束扩散系数及第一、第二CMC测定[J]. 物理化学学报, 1996, 12(4):337-340.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号