Fe3O4@SiO2-NH2-SO3H复合微球改性阴离子交换膜的制备
作者:彭贵宾12,金雅丽12,徐燕青12,廖俊斌12,阮慧敏12,沈江南,12
单位: 1浙江工业大学 化学工程学院,浙江杭州 310014;2浙江工业大学 膜分离与水科学技术中心,浙江杭州 310014
关键词: 阴离子交换膜;聚多巴胺;磺化复合微球;单价选择性;抗污染性
出版年,卷(期):页码: 2020,40(5):54-61

摘要:
提出了一种简单的离子交换膜改性方法。将聚多巴胺(PDA)与复合微球(MS)混合,对商业阴离子交换膜进行改性。研究了复合微球(MS)和聚多巴胺(PDA)的加入对单价选择性和抗污染性的影响。将改性膜用于电渗析(ED),MS-PDA膜的渗透选择性是PDA膜的1.46倍。此外,以十二烷基苯磺酸钠(SDBS)为污染物测试抗污染性能。结果表明,经过300 min后MS-PDA膜依旧未被污染,而PDA膜的转变时间仅为53 min,说明聚多巴胺(PDA)与带负电的磺化复合微球(MS)的引入,可制备兼具良好单价选择性和抗污染性的阴离子交换膜,此方法操作简单,为制备单价选择性阴离子交换膜提供了思路和借鉴。

 

A modified anion exchange membrane was prepared by depositing the dopamine (PDA) and composite microspheres (MS) on commercial anion membranes. The effects of the addition of composite microspheres (MS) on the monovalent selectivity and anti-pollution performance were studied. When the modified membranes were used in ED, the permeability selectivity of MS-PDA membrane was 1.46 times higher than that of the PDA membrane. In addition, using sodium dodecyl benzene sulfonate (SDBS) as the pollutant pollution resistance test the anti-pollution performance. The results show that the MS-PDA membrane was still uncontaminated after 300 min, while the conversion time of PDA membrane was only 53 min, suggesting that the introduction of polydopamine (PDA) and sulfonated composite microspheres (MS) with negative charge can obtain anion exchange membrane with good univalent selectivity and anti-pollution performance.
彭贵宾(1996—),男,江西萍乡,硕士研究生,从事膜分离、电驱动膜技术研究,E-mail:1471159934@qq.com

参考文献:
[1] Zhou M L, Chen X, Pan J F, et al. A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis [J]. Desalination, 2017, 415:29-39.
[2] Zhang Y, Van Der Bruggen B, Pinoy L, et al. Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis [J]. J Membr Sci, 2009, 332: 104-112.
[3] Bukhovets A, Eliseeva T, Oren Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution [J]. J Membr Sci, 2010, 364: 339-343.
[4] Acevedo-Morantes M, Colon G, Realpe A. Electrolytic removal of nitrate and potassium from wheat leachate using a four compartment electrolytic cell [J]. Desalination, 2011, 278: 354-364.
[5] Rijnaarts T, Reurink D M, Radmanesh F, et al. Layer-by-layer coatings on ion exchange membranes: Effect of multilayer charge and hydration on monovalent ion selectivities [J]. J Membr Sci, 2019, 570:513-521.
[6] Guesmi F, Hannachi C, Hamrouni B. Selectivity of anion exchange membrane modified with polyethyleneimine [J]. Ionics, 2012, 18: 711-717.
[7] Guler E, Van Baak W, Saakes M, et al. Monovalent-ion-selective membranes for reverse electrodialysis [J]. J Membr Sci, 2014, 455:254-270.
[8] Mohamed S K. Ion-selective electrode for gallium determination in nickel alloy, fly-ash and biological samples [J]. Anal Chim Acta, 2006, 562: 204-209.
[9] Ran J, Wu L, He Y B, et al. Ion exchange membranes: New developments and applications [J]. J Membr Sci, 2017, 522:267-291.
[10] Post J W, Hamelers H V M, Buisman C J N. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system [J]. J Membr Sci, 2009, 330: 65-72.
[11] Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an
electrodialysis process, using polyelectrolyte multilayer deposition [J]. J Membr Sci, 2013, 431:113-120.
[12] Pan J F, Ding J C, Tan R Q, et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine [J]. J Membr Sci, 2017, 539:263-272.
[13] Liu H M, Ruan H M, Zhao Y, et al. A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously [J]. J Membr Sci, 2017, 543:310-318.
[14] Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation [J]. J Mater Chem A, 2014, 2: 10225-10230.
[15] Wang J, Gong C L, Wen S, et al. A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan [J]. Int J Hydrogen Energ, 2019, 44: 6909-6918.
[16] 徐又一,蒋金泓,朱利平,等.多巴胺的自聚-附着行为与膜表面功能化[J].膜科学与技术,2011,31:32-38.
[17] Vaselbehagh M, Karkhanechi H, Takagi R, et al. Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis [J]. J Membr Sci, 2016, 515:98-108.
[18] 张笛,邓满凤,赵赫, 等.多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚[J].化工学报,2015,66:3705-3711.
[19] Wang J Q, Ng C K, Cao B, et al. Polydopamine enabled palladium loaded nanofibrous membrane and its catalytic performance for trichloroethene dechlorination [J]. Appl Catal a-Gen, 2018, 559:122-126.
[20] Yang H C, Waldman R Z, Wu M B, et al. Dopamine: Just the Right Medicine for Membranes [J]. Adv Funct Mater, 2018, 28:1705327
[21] Zhao Y, Tang K N, Ruan H M, et al. Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane [J]. J Membr Sci, 2017, 536:167-175.
[22] 张华宇,罗芳颖,江婷婷, 等.La/Y掺杂二氧化硅膜的制备及其对染料废水的分离性能研究[J].膜科学与技术,2018,38:113-119.
[23] Lakhotia S R, Mukhopadhyay M, Kumari P. Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment [J]. Sep Purif Technol, 2019, 211:98-107.
[24] Zhao Y, Tang K N, Liu H M, et al. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity [J]. J Membr Sci, 2016, 520:262-271.
[25] Ruan H, Liao J, Tan R, et al. Dual Functional Layers Modified Anion Exchange Membranes with Improved Fouling Resistant for Electrodialysis [J]. Adv Mater Interfaces, 2018, 5:1800909
[26] Ghaemi N, Madaeni S S, Daraei P, et al. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles [J]. Chem Eng J, 2015, 263:101-112.
[27] Abdi G, Alizadeh A, Zinadini S, et al. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid [J]. J Membr Sci, 2018, 552:326-335.
[28] Hu X-J, Liu Y-G, Wang H, et al. Removal of Cu (II) ions from aqueous solution using sulfonated magnetic graphene oxide composite [J]. Sep Purif Technol, 2013, 108:189-195.
[29] Daraei P, Madaeni S S, Ghaemi N, et al. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water [J]. J Membr Sci, 2012, 415:250-259.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号