荷正电纳滤膜的染料脱盐性能研究
作者:李霞,岳献阳12,杨红英12,汪青12,梅松林1,张秋实1,吴件潮1,吴万桦
单位: 1.中原工学院 纺织学院,郑州 450007; 2.纺织服装产业河南省协同创新中心,郑州 450007
关键词: 纳滤膜;荷正电;染料脱盐;抗污染
出版年,卷(期):页码: 2020,40(5):62-69

摘要:
采用自制的荷正电胍盐纳滤膜进行染料脱盐研究。结果表明,该膜对分子量较高的刚果红和活性蓝截留率较高,分别在95%及90%以上,对分子量小的甲基橙在80%以上。膜对无机盐NaCl和Na2SO4的截留率均较低,说明该膜可以实现染料和盐的有效分离。染料浓度和盐浓度对膜的分离性能有重要影响。随着染料浓度的增加,膜通量降低,但刚果红和NaCl的截留率变化不大,甲基橙、活性蓝19及Na2SO4的截留率略有增大。无机盐浓度的增加对膜通量影响不大,但使膜对染料和盐的截留率都降低。对于刚果红-NaCl、甲基橙-NaCl以及活性蓝19-NaCl三种模拟污染体系来说,经过四次污染-清洗循环后,膜相对通量均比较高,表明膜具有良好的抗污染性能。此外,在针对甲基橙-NaCl体系的24 h长期运行过程中,膜保持了较好的稳定性。
 The self-made positively charged guanidine nanofiltration membrane was used for dye desalination. Results showed that the retention rate of congo red and reactive blue 19 with higher molecular weight was higher than 95% and 90%, respectively, followed by methyl orange with lower molecular weight. The retention of NaCl and Na2SO4 by the membrane is low, which indicated that the membrane can effectively separate dye and salt. The concentration of dyes and salts has an important effect on the separation performance of the membrane. With the increase of dye concentration, the membrane flux decreased, while the retention of congo red and NaCl changed little, the retention of methyl orange, reactive blue 19 and Na2SO4 increased slightly. The increase of inorganic salt concentration had little effect on the membrane flux, but led to the decrease of the rejections of dye and salt. For three simulated pollution systems, including congo red-NaCl, methyl orange-NaCl and reactive Blue 19-NaCl, after four pollution-cleaning cycles, all of the membrane showed relatively high fluxes, which demonstrated that the membrane had satisfactory antifouling performance. Furthermore, the membrane maintained good stability in the long-term filtration operation of methyl orange-NaCl system for 24 h.
李霞(1985-),女,河南新乡,博士,讲师,从事聚合物膜的制备与应用研究,E-mail:lixiapiaoyi@163.com

参考文献:
[1] Makhetha T A, Moutloali R M, Antifouling properties of Cu (tpa) @GO/PES composite membranes and selective dye rejection [J]. J Membr Sci, 2018, 554: 195-210.
[2] Gao H, Sun Y, Zhou J, et al. Mussel-inspired synthesis of polydopaminefunctionalized graphene hydrogel as reusable adsorbents for water purification [J]. ACS Appl Mater Interfaces, 2013, 5: 425-432.
[3] Lin J, Ye W, Zeng H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes [J]. J Membr Sci, 2015, 477: 183-193.
[4] 张华宇, 罗芳颖, 江婷婷等, La/Y掺杂二氧化硅膜的制备及其对染料废水的分离性能研究[J]. 膜科学与技术, 2018, 38 (4): 113-119.
[5] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects [J]. Desalination, 2015, 356: 226-254.
[6] Cao X L, Yan Y N, Zhou F Y, et al. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater [J]. J Membr Sci, 2020, 595: 117476.
[7] Xu P, Wang W, Qian X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio [J]. Desalination, 2019, 449: 57-68.
[8] Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation [J]. Sep Purif Technol, 2017, 186: 233-242.
[9] Zhong P S, Widjojo N, Chung T S, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater [J]. J Membr Sci, 2012, 417-418: 52-60.
[10] Wei X Z, Wang S X, Shi Y Y, et al. Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification [J]. Ind Eng Chem Res, 2014, 53 (36): 14036-14045.
[11] Zheng Y P, Yao G H, Cheng Q B, et al. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration [J]. Desalination, 2013, 328: 42–50.
[12] 韩子龙, 李俊俊, 叶谦等, N,N′-双(3-氨丙基)甲胺为单体的荷正电复合纳滤膜的制备与表征 [J]. 膜科学与技术, 2016, 36 (4): 24-29.
[13] Li X, Cao Y M, Yu H J, et al. A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization [J]. J Membr Sci, 2014, 466: 82-91.
[14] AlVentos-Delara E, Barredo-Damas S, Zuriaga-Agustf E, et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt [J]. Sep Purif Technol, 2014, 129(129): 96-105.
[15] Sójka-Ledakowicz J, Koprowski T, Machnowski W, et al. Membrane filtration of textile dyehouse wastewater for technological water reuse [J]. Desalination, 1998, 119 (1-3): 1-10.
[16] Wang L, Wang N X, Zhang GJ, et al. Covalent crosslinked assembly of tubular ceramic-based multilayer nanofiltration membranes for dye desalination [J]. Aiche J, 2013, 59 (10): 3834-3842.
[17] Kiln T H, Park C, Kim S. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration [J]. J Clean Prod, 2005, 13(8): 779-786.
[18] Wei X, Kong X, Sun C, et al. Characterization and application of a thin-film composition nanofiltration hollow fiber membrane for dye desalination and concentration [J]. Chem Eng J, 2013, 223 (5): 172-182.
[19] Wang X L, Zhang C, Ouyang P, The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode [J]. J Membr Sci, 2002, 204(1-2): 271-281.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号