IAMBR处理高盐污水的效能及其微生物群落结构分析
作者:张磊
单位: 山东省油田采出水处理及环境污染治理重点实验室,中石化石油工程设计有限公司,山东 东营 257026
关键词: 间歇曝气膜生物反应器(IAMBR);高盐生活污水;微生物群落结构
出版年,卷(期):页码: 2020,40(5):101-110

摘要:
<p>采用间歇曝气膜生物反应器(intermittently aerated&nbsp; membrane&nbsp; bioreactor,IAMBR)处理模拟含盐生活污水,研究盐度在高浓度范围内变化时对反应器运行效能及微生物群落结构的影响。结果表明,当进水盐度逐渐增加但低于20 g/L时,反应器运行稳定,出水效果良好,总有机碳(TOC)、氨氮(NH4+-N)和总氮(TN)去除率分别在90 %以上,95 %以上及75 %以上,出水硝态氮较低且保持稳定;当盐度增加至 35 g/L时,反应器的TOC、NH4+-N和TN去除率明显下降,分别下降至80 %、70 %和50 %,出水水质变差,出水硝态氮波动较大。出水亚硝态氮不随盐度变化而变化,含量在反应的任何阶段均较低。总细菌和氨氧化细菌(AOB)的PCR-DGGE分析表明,随着进水盐度的增加,系统内的微生物群落结构变化较大,优势微生物变化较大,亚硝酸菌属类AOB(Nitrosomonas)的含量有所减少。</p>
<p>&nbsp;<span style="font-family: &quot;Times New Roman&quot;; font-size: 10.5pt"><font face="Arial">ntermittent aerated membrane bioreactor (IAMBR) was used to treat salinity municipal sewage, and the effects of salinity in the high concentration range on the IAMBR and the microbial community structure were studied. The results showed that when the salinity was lower than 20g/L, the IAMBR was operated stably and the effluent effect was good, and the removal rates of TOC, NH4+-N and TN were above 90%, 95% and 75%, respectively,and the nitrate nitrogen in the effluent was low and stable. When salinity was increased to 35g/L, the quality of effluent was deteriorated, and the removal rates of TOC, NH4 + -N and TN were reduced to 80%, 70% and 50%, respectively, and the nitrate nitrogen in the effluent fluctuated greatly. The nitrite nitrogen in the effluent did not varied with the increase of salinity, and the content was low in any stage of the reaction process. PCR-DGGE analysis of total bacteria and ammonia oxidizing bacteria (AOB) showed that with the increase of the influent salinity, the dominant microorganisms in the system changed and the content of AOB ((Nitrosomonas) was reduced. </font></span></p>
张磊(1973-),男,山东烟台人,毕业于中国石油大学(华东),本科,高级工程师,主要从事油田注水及采出水处理方面的研究工作;E-mail:395660508@qq.com。

参考文献:
<p>&nbsp;[1]&nbsp;叶芳凝, 石先阳. 盐度对 MBR 处理高氨氮废水的运行及微生物群落影响研究[J]. 膜科学与技术, 2018,38(5):77-83.<br /> &nbsp;[2]&nbsp;林玉科, 张洁, 吴志国, 等. MBR污泥驯化和在高盐废水处理中的应用[J]. 膜科学与技术, 2017,37(04):86-92.<br /> &nbsp;[3]&nbsp;Li C, Li X, Qin L, et al. Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: Pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis[J]. Science of The Total Environment, 2019,696:133953.<br /> &nbsp;[4]&nbsp;Wang H, Huang H, Liu R, et al. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater[J]. Water Research, 2019,167:115138.<br /> &nbsp;[5]&nbsp;武周虎, 张国辉, 武桂芝. 香港利用海水冲厕的实践[J]. 中国给水排水, 2000(11):49-50.<br /> &nbsp;[6]&nbsp;侯纯扬. 海水淡化与综合利用: 中国膜科学与技术报告会, 2003[C].<br /> &nbsp;[7]&nbsp;孙晓杰, 徐迪民, 于德爽. 海水冲厕污水的短程硝化试验研究[J]. 中国给水排水, 2007(03):40-43.<br /> &nbsp;[8]&nbsp;成玉, 王树勋, 姜天翔, 等. 大生活用海水技术研究现状及进展[J]. 海洋开发与管理, 2013,30(S1):52-55.<br /> &nbsp;[9]&nbsp;王志霞, 王志岩, 武周虎. 高盐度废水生物处理现状与前景展望[J]. 工业水处理, 2002(11):1-4.<br /> [10]&nbsp;武桂芝, 武周虎, 张国辉, 等. 海水冲厕的应用现状及发展前景[J]. 青岛建筑工程学院学报, 2002,23(3):49-52.<br /> [11]&nbsp;李通, 王宁, 李荣香. 秦皇岛市海水冲厕的可行性分析[J]. 价值工程, 2013,32(20):54-55.<br /> [12]&nbsp;程宏伟, 林里, 刘德明. 香港应用海水冲厕工程综述[J]. 福建建筑, 2010(08):1-3.<br /> [13]&nbsp;I C R W, IRVINE R L. Treatment of hypersaline wastewater in the Sequencing Batch Reactor[J]. Water Research, 1995,29(4):1159-1168.<br /> [14]&nbsp;Luo W, Hai F I, Kang J, et al. Effects of salinity build-up on biomass characteristics and trace organic chemical removal: Implications on the development of high retention membrane bioreactors[J]. Bioresource Technology, 2015,177:274-281.<br /> [15]&nbsp;Jang D, Hwang Y, Shin H, et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors[J]. Bioresource Technology, 2013,141:50-56.<br /> [16]&nbsp;Johir M A H V. Effect of salt concentration onmembrane bioreactor (MBR) performances: Detailed organic characterization[J]. Desalination, 2013(322):13-20.<br /> [17]&nbsp;李俊虎, 周珉, 王乔, 等. 高盐废水处理工艺最新研究进展[J]. 环境科技, 2018,31(04):74-78.<br /> [18]&nbsp;叶芳凝, 石先阳. 盐度对MBR处理高氨氮废水的运行及微生物群落影响研究[J]. 膜科学与技术, 2018,38(5):77-83.<br /> [19]&nbsp;闫欢汐, 许振钰, 金春姬, 等. 厌氧膜生物反应器处理含盐废水运行效能及膜污染特性[J]. 环境科学, 2019,40(06):2793-2799.<br /> [20]&nbsp;朱砂砾, 谢康, 夏四清. 盐度对序批式反应器与间歇曝气膜生物反应器污水处理效果的影响[J]. 环境污染与防治, 2012,34(02):14-18.<br /> [21]&nbsp;Xie K, Xia S, Song J. Effects of salinity on ammonia-oxidizing bacterial community in conventional batch reactor (CSBR) and intermittently aerated membrane bioreactor (IAMBR)[J]. Fresenius Environmental Bulletin, 2012,1a(21):153-162.<br /> [22]&nbsp;张兰河, 田蕊, 陈子成, 等. NaCl盐度对A~2/O工艺去除废水污染物和系统微生物的影响[J]. 农业工程学报, 2018,34(10):231-237.<br /> [23]&nbsp;国家环境保护总局. 水和废水监测分析方法 (第四版)[M]. 2002年12月第四版. 北京: 中国环境科学出版社, 2002.<br /> [24]&nbsp;Kang Xie J L R J. MICROBIAL DIVERSITY AND COMPOSITION IN TWO FULL-SCALE WASTEWATER TREATMENT PLANTS (WWTPS) IN SHANGHAI[J]. Fresenius Environmental Bulletin, 2011,6(20):1525-1534.<br /> [25]&nbsp;Xie K, Xia S, Song J, et al. The Effect of Salinity on Membrane Fouling Characteristics in an Intermittently Aerated Membrane Bioreactor[J]. Journal of Chemistry, 2014,2014:1-7.<br /> [26]&nbsp;Luo W, Phan H V, Hai F I, et al. Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor[J]. Bioresource Technology, 2016,200:305-310.<br /> [27]&nbsp;Zhang Y, Kuroda M, Nakatani Y, et al. Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors[J]. Journal of Bioscience and Bioengineering, 2019,127(5):618-624.<br /> [28]&nbsp;Tan S, Cui C, Chen X, et al. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments[J]. Bioresource Technology, 2017,224:285-291.<br /> [29]&nbsp;Song W, Lee L Y, You H, et al. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater[J]. Bioresource Technology, 2020,295:122284.<br /> [30]&nbsp;张兰河, 赵倩男, 郑晶, 等. Ca~(2+)、Mg~(2+)共存对SBR工艺生物脱氮和微生物群落结构的影响[J]. 环境科学学报, 2019,39(10):3256-3264.<br /> [31]&nbsp;Zhang H, Wang H, Jie M, et al. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater[J]. Bioresource Technology, 2020,295:122302.<br /> [32]&nbsp;Lee S, Cho K, Lim J, et al. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population[J]. Bioresource Technology, 2011,102(5):4196-4203.<br /> [33]&nbsp;Tan X, Acquah I, Liu H, et al. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective[J]. Chemosphere, 2019,220:1150-1162.<br /> [34]&nbsp;Qiu G, Ting Y. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics[J]. Bioresource Technology, 2013,150:287-297.</p>

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号