借助于硅凝胶修饰调控陶瓷中空纤维孔结构
作者:孙 赫,李 琳1,徐瑞松1,洪 周2,顾学红2,王同华1
单位: 1大连理工大学化工学院精细化工国家重点实验室,炭膜及多孔炭材料研究室,大连,116024;
关键词: 硅凝胶;气体分离;陶瓷中空纤维;孔结构
出版年,卷(期):页码: 2020,40(6):22-28

摘要:
以正硅酸乙酯(TEOS)为硅源,EtOH为共溶剂,HCl为催化剂,借助骨架结构的硅凝胶填充并调控陶瓷中空纤维孔结构。研究了溶胶配比、环境湿度和添加剂对中空纤维气体通量和微观孔结构的影响。结果表明,借助于硅凝胶可明显地调控并改善中空纤维孔结构。溶胶配比对溶胶体系的稳定性及中空纤维的修饰效果有很大的影响;提高环境湿度可有效防止凝胶体龟裂和骨架结构的坍塌;添加剂的引入可以改善凝胶与干燥过程,进一步优化修饰后中空纤维的微观结构。经硅凝胶修饰的中空纤维孔径减小并均一化,集中孔分布区间由0.24-0.32μm下降到0.14-0.18μm,直径d>0.2μm的孔含量由37.7%下降到4.1%,并拥有高达13570GPU的N2气体通量。
Taking tetraethyl orthosilicate (TEOS) as the silicon source, EtOH as the co-solvent, and HCl as the catalyst, he pore structure of the ceramic hollow fiber is filled and regulated by means of the silica gel of the framework structure. The effects of sol ratio, environmental humidity and additives on the gas flux and micropore structure of ceramic hollow fiber were studied. The results show that the modification of the silica gel can significantly improve and regulate the pore structure of the ceramic hollow fiber. The proportion of sol has a great influence on the stability of the sol system and the modification effect of the ceramic hollow fiber. Increasing the environmental humidity can effectively prevent the gel from cracking and the collapse of the framework structure. Introduction of additives can improve the gel and drying process, optimize the gel The microstructure of the body and ceramic hollow fiber. The pore diameter of the ceramic hollow fiber modified by silica gel is reduced and uniformized, the distribution range of concentrated pores is reduced from 0.24-0.32μm to 0.14-0.18μm, and the content of pores with diameter d>0.2μm decreased from 37.7% to 4.1%, and has N2 gas flux up to 13570GPU.
孙赫(1994-),男,山东临沂人,硕士生,从事膜材料的研究.

参考文献:
[1] Pinnau I, Freeman B D. Formation and Modification of Polymeric Membranes: Overview[J], 2000, 10.1021/bk-2000-0744: 1-22.
[2] 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, v.69(1): 58-64.
[3] Kong C L, Du H B, Chen L, et al. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation[J]. Energy & Environmental Science, 2017, 10(8): 1812-1819.
[4] Rajagopalan R, Merritt A, Tseytlin A, et al. Modification of macroporous stainless steel supports with silica nanoparticles for size selective carbon membranes with improved flux[J]. Carbon, 2006, 44(10): 2051-2058.
[5] Sara E, Alberto T, Sergey S, et al. Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications[J]. Membranes, 2018, 8(1): 16-.
[6] Li L, Song C, Jiang H, et al. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer[J]. Journal of Membrane Science, 2014, 450: 469-477.
[7] Ma X, Lin B K, Wei X, et al. Gamma-Alumina Supported Carbon Molecular Sieve Membrane for Propylene/Propane Separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4297-4305.
[8] Tseng H H, Wang C-T, Zhuang G-L, et al. Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion[J]. Journal of Membrane Science, 2016: S0376738816300953.
[9] 徐吉上, 何  勇, 顾学红等. α-Al2O3中空纤维支撑体的制备与表征[J]. 膜科学与技术, 2011, 31(2): 19-23.
[10] Venkataraman K, Choate W T, Torre E R, et al. Characterization studies of ceramic membranes. A novel technique using a coulter? Porometer[J], 1988, 39(3): 259-271.
[11] 奚红霞, 黄仲涛. 凝胶的干燥[J]. 膜科学与技术, 1997(1): 2-9.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号