SAXS技术表征氯解复合反渗透膜结构演变
作者:王 剑,魏杨扬,田欣霞,张潇泰,赵 曼,张慧峰
单位: 自然资源部天津海水淡化与综合利用研究所,天津 300192
关键词: 小角X射线散射,聚酰胺反渗透膜,氯解,结构演变
出版年,卷(期):页码: 2020,40(6):96-103

摘要:
目前主要从化学组成角度阐述反渗透膜氯化机理,氯化导致的微观结构变化及其对水盐分离性能的影响缺乏有效的表征手段。采用小角X射线散射(SAXS)技术表征不同氯化强度处理的反渗透膜,研究分离层微观结构参数旋转半径(Rg)、相关距离(a)和分形维数(β)与水透过系数(A)和盐透过系数(B)的关系。结果表明,随着氯化强度的增加,聚酰胺分离层的Rg、a和β单调增加,且与A的变化正相关,相关系数(R2)高达0.99;长程相关距离a2(R2=0.9915)与A的相关性高于短程相关距离a1(R2=0.8781),说明氯化作用对二级结构粒子(对应a2)的破坏作用大于对初级结构粒子(对应a1)的破坏作用;B与Rg、a和β的线性相关性较弱,分别为0.8155(Rg)、0.9148(a1)、0.7801(a2)、0.7621(β),是因为B还受荷电性等因素的影响。
Reported mechanistic chlorination analysis of polyamide (PA) reverse osmosis membranes heavily relies on the change of chemical element composition under different chlorination dosage. It still lacks the effective technique to characterize the evolution of PA membrane microstructure, and its nexus with water permeability and/or water/salt selectivity. Herein, small angle x-ray scattering (SAXS) technique was adopted to investigate the microstructure evolution of PA reverse osmosis membrane exposed in sodium hypochlorite. Structure parameters including radius of gyration (Rg), correlation distance (a) and fractal dimension (β) were analyzed, and their relationship between water permeation coefficient (A) and NaCl permeation coefficient (B) were investigated. The results indicated that Rg, a and β monotonically increased with the intensity of chlorination, and were positively correlated with A, giving a correlation coefficient (R2) of ~ 0.99. The correlation between the A and long-range correlation distance (a2) gave a higher R2 (0.9915 vs 0.8781) when compared with the short-range correlation distance (a1), indicating that the destructive effect for the secondary structure particle (corresponding to a2) is more severity. There were weak correlations between the B and the structure parameters, R2 of 0.8155 (Rg), 0.9148 (a1), 0.7801(a2) and 0.7621 (β), which is due to the impact of charge performance.
王剑(1985-),男,山东潍坊人,博士,从事反渗透和纳滤膜材料的开发研究,E-mail:wangjian_isdmu@163.com

参考文献:
 [1] 柳圳, 赵颂, 王志, 等. 反渗透膜耐氯及氯化修复研究进展[J]. 膜科学与技术, 2019, 39(02): 123-134.
 [2] 邴绍所, 周勇, 高从堦. 耐氧化芳香聚酰胺反渗透膜的研究进展[J]. 膜科学与技术, 2016,(02): 115-121.
 [3] Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies[J]. Journal of Membrane Science, 2017,541:108-126.
 [4] 黄海. 高性能耐氯聚酰胺反渗透复合膜的制备与性能研究[D]. 浙江大学, 2015.
 [5] Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes[J]. Progress in Polymer Science, 2017,72:1-15.
 [6] Soice N P, Greenberg A R, Krantz W B, et al. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis[J]. Journal of Membrane Science, 2004,243(1-2):345-355.
 [7] Kwon Y, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes[J]. Journal of Membrane Science, 2006,283(1-2):21-26.
 [8] Sundet S A. Morphology of the rejecting surface of aromatic polyamide membranes for desalination[J]. Journal ofMembrane Science, 1993,76:175-183.
 [9] Singh P S, Ray P, Xie Z, et al. Synchrotron SAXS to probe cross-linked network of polyamide 'reverse osmosis' and 'nanofiltration' membranes[J]. Journal of Membrane Science, 2012,421-422:51-59.
[10] Song X, Gan B, Qi S, et al. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure–Property Correlation[J]. Environmental Science & Technology, 2020,54(6):3559-3569.
[11] 周宗尧. 薄层复合正渗透膜的结构设计及性能调控[D]. 中国科学院大学(中国科学院烟台海岸带研究所), 2018.
[12] Chachaty C, Korb J, van der Maarel J. R. C., et al. Fractal structure of a cross-linked polymer resin: A small-angle x-ray scattering, pulsed field gradient, and paramanetic relaxation study[J]. Physical Review B, 1991,44(10):4778-4793.
[13] 朱育平. 小角X射线散射: 理论、测试、计算及应用[M]. 化学工业出版社, 2008.
[14] Wang J, Dlamini D S, Mishra A K, et al. A critical review of transport through osmotic membranes[J]. Journal of Membrane Science, 2014,454:516-537.
[15] Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016,1(5):16018.
[16] KWON Y, LECKIE J. Hypochlorite degradation of crosslinked polyamide membranesII. Changes in hydrogen bonding behavior and performance[J]. Journal of Membrane Science, 2006,282(1-2):456-464.
[17] Ettori A, Gaudichet-Maurin E, Schrotter J, et al. Permeability and chemical analysis of aromatic polyamide based membranes exposed to sodium hypochlorite[J]. Journal of Membrane Science, 2011,375(1-2):220-230.
[18] Kang G, Gao C, Chen W, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. Journal of Membrane Science, 2007,300(1-2):165-171.
[19] Wang J, Wang Q, Tian X G X, et al. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Frontiers of Environmental Science & Engineering, 2020,14(1):6.
[20] Tian X, Wang J, Zhang H, et al. Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer[J]. RSC Advances, 2018,8(22):12439-12448.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号