响应曲面法优化纳滤去除废水中重金属离子研究
作者:李亚宁1,郝亚超1,李 亮1,袁俊生2,付春明1,肖彩英1,郝润秋1,张成凯1,刘 祺1
单位: 1.中海油天津化工研究设计院有限公司,天津 300130;2.河北工业大学,天津 300130
关键词: 响应曲面法;重金属离子深度去除;高盐废水
分类号: x789
出版年,卷(期):页码: 2020,40(6):111-117

摘要:
采用响应曲面法,对纳滤法深度去除高盐煤制油废水中重金属离子的过程进行了实验设计与分析,结果表明:在C(EDTA):C(M2+)为1.0:1.1、渗透压为1.89 MPa、pH为 4.1和进料流量为298.9 L/h时,NF90-2540纳滤膜对重金属离子的截留效果最好,重金属离子的截留率可达到97.5%。由三维立体图和等高线图分析可知:使用络合纳滤法截留废水中重金属离子过程中,重金属离子的截留率主要是受纳滤膜的空间位阻作用影响;络合剂投加量与pH的交互影响显著,而其他因素的交互作用不显著。
 Response surface methodology (RSM) was used to study the process of deep removal of heavy metal ions from high-salt coal-based oil-making wastewater by nanofiltration. The fitting results showed that NF90-2540 has the best interception of heavy metal ions and the retention rate can reach 97.5% under the conditions of C(EDTA):C(M2+)= 1.0:1.1、osmotic pressure= 1.89 MPa、pH= 4.1、feed flow rate= 298.9 L/h. Through analysis of the three-dimensional perspective and contour plots in the response surface methodology, it can be seen that when complexing nanofiltration intercepts heavy metal ions in wastewater, it is mainly affected by the steric hindrance of the nanofiltration membrane. The interaction between complexing agent and pH was significant, indicating that the complexation of heavy metal ions with complexing agents is mainly affected by pH. The interaction of other factors was not significant.

基金项目:
国家重大专项(2017ZX07017-002-01), 国家重大专项(2017ZX07017-002-02)

作者简介:
李亚宁(1992-),男,河北衡水,助理工程师,硕士研究生,研究方向为工业水处理,E-mail:1582827623@qq.com

参考文献:
[1] 李信. 化学及沉淀法处理五金电镀厂废水工程技术研究[D]. 江西, 南昌大学, 2014.
[2] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review.[J]. Journal of Environmental Management, 2011, 92(3):407-18.
[3] 唐林. 废水中低浓度铬镍的去除和铬还原过程ORP的研究[D]. 上海, 华东理工大学, 2019.
[4] 杨梖, 白雪, 顾海鑫. 磁性吸附材料的制备及其在污水处理中的应用[J]. 环境工程, 2015, 33(4):25-29.
[5] 沈倩,徐孙杰,等. 含重金属废水膜分离技术的应用进展[J]. 山东化工,2019,48(05):59-65
[6] 赵丽芹. 超滤-反渗透应急饮用水处理试验研究[D]. 浙江, 浙江大学, 2019.
[7] 宫奕波. 混凝吸附-络合超滤组合工艺对突发性镐污染水的去除效能研究[D]. 黑龙江, 哈尔滨工业大学, 2019.
[8] 刘硕, 李振山, 汪成运. 酒石酸钾钠(PST)对纳滤处理重金属废水的强化效果[J]. 环境工程报, 2014, 8(4):1290-1291.
[9] Murthy Z V P, Choudhary A. Separation of cerium from feed solution by nanofiltration[J]. Desalination, 2011, 279(1–3):428-432.
[10] 白玲, 冷婧, 常娟. EDTA对纳滤铅铜混合离子的去除效果[J]. 膜科学与技术, 2016, 36(06):119-125.
[11] 李莉, 张赛, 何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45.
[12] Bezerra M A, Santelli R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5):965-77.
[13] 中华人民共和国国家环境保护局, 中国国家环境保护局科技标准司. GB8798-1996,污水综合排放标准[S]. 北京: 中国环境科学出版社, 1996.
[14] Zinatizadeh A A, Mohamed A R, Abdullah A Z, et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM)[J]. Water Research, 2006, 40(17):3193-208.
[15] Szymczyk A, Fievet P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. Journal of Membrane Science, 2005, 252(1–2):77-88.
[16] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[17] Gomes S, Cavaco S A, Quina M J, et al. Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis[J]. Desalination, 2010, 254(1):80-89.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号