PVDF/PI阳离子交换膜的制备及脱盐性能
作者:王乾杰,李红海,苏保卫
单位: 1.青岛科技大学 化工学院,山东青岛 266042;2.中国海洋大学 化学化工学院,青岛 266100
关键词: 阳离子交换膜;表面修饰;电渗析;浸没沉淀相转化;交联
出版年,卷(期):页码: 2021,41(1):1-9

摘要:
通过浸没沉淀相转化的方法制备了聚偏氟乙烯(PVDF)/聚酰亚胺(PI)共混膜,然后使用4,4’-二氨基二苯乙烯-2,2’-二磺酸与三乙胺(DASD-TEA)溶液修饰共混膜表面,制备出PVDF/PI阳离子交换膜。探究了DASD-TEA溶液的浸泡时间、浸泡温度、浓度与PI的浓度对PVDF/PI阳离子交换膜脱盐率的影响,得出最优的铸膜液配比为19.0 wt%的 PVDF、1.0 wt%的PI和80.0 wt% 的N,N-二甲基甲酰胺(DMF);最佳的 DASD-TEA溶液修饰条件:0.03 wt% 的DASD,浸泡时间为10.0 min,浸泡温度为50.0 ℃。最佳条件下,PVDF/PI阳离子交换膜的离子交换容量(IEC)为0.32 mmol·g-1,含水率为38.6 %,纯水渗透率为50 L·m-2·h-1·bar-1,接触角为81.9 °,膜面电阻为2.96 Ω·cm2。采用三组膜对的电渗析装置在电压4V和流量40 L/h下对2000 mg/L NaCl溶液进行了120 min的脱盐试验,PVDF/PI阳离子交换膜的脱盐率为商品化阳离子交换膜的1.33倍,其脱盐性能高于商品化阳离子交换膜。
 Polyvinylidene fluoride (PVDF)/Polyimide (PI) blend membrane was prepared by the immersion precipitation phase transformation method. Then the PVDF/PI membrane was modified using 4,4'-diaminostilbene-2,2'-disulfonic acid and triethylamine (DASD-TEA) aqueous solution to prepare PVDF/PI cation exchange membrane. The effects of soaking time, temperature, concentration of DASD-TEA solution and PI concentration on the desalination rate of the PVDF/PI cation exchange membrane were explored. The optimal composition of the casting solution is 19.0 wt% PVDF, 1.0 wt% PI and 80.0 wt% N, N-dimethylformamide (DMF). The optimal conditions of the DASD-TEA modification are 0.03 wt% DASD in the DASD-TEA aqueous solution, and soaking at 50.0 ℃ for 10 min. The ion exchange capacity (IEC) of the PVDF/PI cation exchange membrane is 0.32 mmol·g-1, the water content is 38.6%, the pure water permeability is 50 L·m-2·h-1·bar-1, the contact angle is 81.9 °, and the transmembrane resistance is 2.96 Ω·cm2. The desalination experiment was carried out in the electrodialysis device with three membrane pairs under 4 V voltage for 120 min, with 2000 mg/L NaCl solution as feed at a flow rate of 40 L·h-1. The desalination rate of the PVDF/PI cation exchange membrane is 1.33 times that of the commercial cation exchange membrane.。
王乾杰(1994-),男,山东聊城人,硕士研究生,研究方向:传质与分离工程,E-mail: wqjqust@163.com。

参考文献:
[1] STRATHMANN H. Electrodialysis, a mature technology with a multitude of new applications [J]. Desalination, 2010, 264(3): 268-288.
[2] WANG Q, GAO X, ZHANG Y, et al. Hybrid RED/ED system: Simultaneous osmotic energy recovery and desalination of high-salinity wastewater [J]. Desalination, 2017, 405: 59-67.
[3] DAHMARDEH H, AKHLAGHI AMIRI H A, NOWEE S M. Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater [J]. Chemical Engineering and Processing - Process Intensification, 2019, 145: 107682.
[4] LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review [J]. Water Research, 2006, 40(20): 3671-3682.
[5] TEDESCO M, SCALICI C, VACCARI D, et al. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines [J]. Journal of Membrane Science, 2016, 500: 33-45.
[6] 何汉锋. 基于蒸发热结晶技术的高盐废水问题解决处理技术研究 [J]. 科技视界, 2018(19): 213-214.
[7] GAO H, ZHANG B, TONG X, et al. Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis [J]. Journal of Membrane Science, 2018, 567:68-75.
[8] HONG J G, ZHANG B, GLABMAN S, et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review [J]. Journal of Membrane Science, 2015, 486: 71-88.
[9] NA Z, YANG L, RU L, et al. Polymer inclusion membrane (PIM) containing ionic liquid as a proton blocker to improve waste acid recovery efficiency in electrodialysis process [J]. Journal of Membrane Science, 2019, 581: 18-21
[10] RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications [J]. Journal of Membrane Science, 2017, 522: 267-91.
[11] 李爱玉, 王三反, 宋小三,等. 离子交换膜的制备及发展趋势研究 [J]. 环境科学与管理, 2017, 42(05): 102-105.
[12] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review [J]. Journal of Membrane Science, 2018, 555: 429-454.
[13] ZHAO J, SUN L, CHEN Q, et al. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications [J]. Journal of Membrane Science, 2019, 582: 211-223.
[14] YIFRU WAKTOLE B, QIAOLIN L, BINGHUA Y, et al. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis [J]. Desalination, 2019, 465: 94-103
[15] YUANWEI L, SHANSHAN Y, YU C, et al. Preparation of water-based anion-exchange membrane from PVA for anti-fouling in the electrodialysis process [J]. Journal of Membrane Science, 2019, 570-571: 130-138
[16] CAN L, SHUXUAN L, LI L, et al. High Solvent-resistant and Integrally Crosslinked Polyimide-based Composite Membranes for Organic Solvent Nanofiltration [J]. Journal of Membrane Science, 2018, 564: 10-21
[17] CHENJIE W, FENGYING D, LIGANG L, et al. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation [J]. Journal of Membrane Science, 2018, 555: 220-228
[18] LI C, LI S, TIAN L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN) [J]. Journal of Membrane Science, 2019, 572: 520-531.
[19] LI S, LI C, SONG X, et al. Graphene Quantum Dots-Doped Thin Film Nanocomposite Polyimide Membranes with Enhanced Solvent Resistance for Solvent-Resistant Nanofiltration [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6527-6540.
[20] JUNBIN L, XINYAN Y, NENGXIU P, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications [J]. Journal of Membrane Science, 2019, 577: 153-164
[21] LIU H, RUAN H, ZHAO Y, et al. A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously [J]. Journal of Membrane Science, 2017, 543: 310-8.
[22] XI C, YI H, YI F, et al. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater [J]. Separation and Purification Technology, 2019, 212: 326-336
[23] 李树轩, 黄良伟, 苏保卫, 等. 交联聚酰亚胺耐溶剂超滤膜的制备及性能研究 [J]. 膜科学与技术, 2018, 38(05): 47-54.
[24] 武利顺, 孙俊芬, 王庆瑞. 相转化膜孔形成机理的研究进展 [J]. 膜科学与技术, 2007, 03-: 86-90.
[25] 李媛, 王立国. 电渗析技术的原理及应用 [J]. 城镇供水, 2015, 05 : 16-22.
[26] 严昌虹. 由水溶性聚酰胺酸制备聚酰亚胺 [J]. 绝缘材料通讯, 1981, 01 : 34-42.
[27] HAO R, JIAO X, ZHANG X, et al. Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber [J]. Applied Surface Science, 2019, 485: 304-313.
[28] LIU H, JIANG Y, DING J, et al. Surface layer modification of AEMs by infiltration and photo-cross-linking to induce monovalent selectivity [J]. AIChE Journal, 2018, 64(3): 993-1000.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号