微波合成沸石膜最新研究进展
作者:闫加辉,刘毅
单位: 大连理工大学 化工学院 精细化工国家重点实验室,大连 116024
关键词: :沸石膜;微波合成;单模微波加热;气体分离;有机物脱水
出版年,卷(期):页码: 2021,41(1):134-143

摘要:
微波合成技术由于其体相均匀加热、成核瓶颈效应、热效应与非热效应等独特的加热特性,目前已广泛应用于实验室少量间歇与工业化批量连续合成高性能沸石膜。本文简要介绍了微波辅助合成沸石膜的基本原理和加热特性,系统总结了近年来微波辅助合成沸石膜的最新研究进展,其中包括单模微波辅助合成沸石膜新技术、微波辐射对沸石膜微观形貌调控作用探讨以及规模化微波辅助合成沸石膜的典型应用案例。最后对微波辅助合成沸石膜的发展方向及应用前景进行了展望。
Microwave-assisted heating technique has been widely used in energy-efficient synthesis of zeolite membranes due to its unique properties like uniform bulk heating, nucleation-related bottleneck effect, thermal effect, and non-thermal effect. This review briefly introduces the basic principle and heating characteristics regarding microwave-assisted synthesis of zeolite membranes and systematically summarizes the most recent progress in microwave-assisted synthesis of zeolite membranes, including single-mode microwave-assisted synthesis of zeolite membranes, microwave-assisted microstructural modulation of zeolite membranes, and typical application cases of industrial-scale batch production of zeolite membranes by microwave-assisted heating. Finally, we highlight the future direction and application prospects of microwave-assisted synthesis of zeolite membranes.
闫加辉(1997-),男,辽宁沈阳人,硕士生,主要从事高性能沸石膜可控制备,E-mail:jiahuiyan@mail.dlut.edu.cn.

参考文献:
[1] Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes - a review and comparison with MOFs[J]. Chem Soc Rev, 2015, 44(20):7128-7154.
[2] Pan T, Wu Z, Yip ACK. Advances in the green synthesis of microporous and hierarchical zeolites: A short review[J]. Catalysts, 2019, 9(3):274.
[3] 宗传欣, 丁晓斌, 南江普,等. 膜法VOCs气体分离技术研究进展[J]. 膜科学与技术, 2020, 40(01):284-293.
[4] Kosinov N, Gascon J, Kapteijn F, et al. Recent developments in zeolite membranes for gas separation[J]. J Membr Sci, 2016, 499:65-79.
[5] Meng X, Xiao FS. Green routes for synthesis of zeolites[J]. Chem Rev, 2014, 114(2):1521-1543.
[6] Li Y, Yang W. Microwave synthesis of zeolite membranes: A review[J]. J Membr Sci, 2008, 316(1-2):3-17.
[7] Arafat A, Jansen JC, Ebaid AR, et al. Microwave preparation of zeolite-Y and ZSM-5[J]. Zeolites, 1993, 13(3):162-165.
[8] Girnus I, Pohl MM, Richtermendau J, et al. Synthesis of ALPO4-5 aluminumphosphate molecular-sieve crystals for membrane applications by microwave-heating[J]. Adv Mater, 1995, 7(8):711-+.
[9] Xu X, Yang W, Liu J, et al. Synthesis of a high‐permeance NaA zeolite membrane by microwave heating[J]. Adv Mater, 2000, 12(3):195-+.
[10] Stefanidis GD, Muñoz AN, Sturm GSJ, et al. A helicopter view of microwave application to chemical processes: Reactions, separations, and equipment concepts[J]. Rev Chem Eng, 2014, 30(3):233-259.
[11] Li Y, Yang W. Molecular sieve membranes: From 3D zeolites to 2D MOFs[J]. Chin J Catal, 2015, 36(5):692-697.
[12] 崔岩, 郭成玉, 王晓化,等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(03):1-9.
[13] 张宝泉, 孙亮, 郑孟瑶,等. 纯硅MFI型分子筛膜的原位合成及其CO2/N2混合气体分离性能研究[J]. 膜科学与技术, 2017, 37(02):26-31.
[14] Liu Y, Li Y, Yang W. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth[J]. J Am Chem Soc, 2010, 132(6):1768-+.
[15] Le QT, Nguyen DH-P, Nguyen NM, et al. Gelless secondary growth of zeolitic aluminophosphate membranes on porous supports with high performance in CO2/CH4 separation[J]. Chemsuschem, 2020, 13(7):1720-1724.
[16] Cheng Z, Sun W, Han S, et al. Microwave-assisted synthesis of NaA zeolite membrane with high separating performance by seeding using VPT method[J]. Chem Lett, 2013, 42(4):436-437.
[17] Li X, Yan Y, Wang Z. Continuity control of b-oriented MFI zeolite films by microwave synthesis[J]. Ind Eng Chem Res, 2010, 49(12):5933-5938.
[18] Liu Y, Lu J, Liu Y. Single-mode microwave heating-induced concurrent out-of-plane twin growth suppression and in-plane epitaxial growth promotion of b-oriented MFI film under mild reaction conditions[J]. Chem Asian J, 2020, 15(8):1277-1280.
[19] Zhang C, Peng L, Jiang J, et al. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin J Chem Eng, 2017, 25(11):1627-1638.
[20] Li Y, Liu J, Yang W. Formation mechanism of microwave synthesized LTA zeolite membranes[J]. J Membr Sci, 2006, 281(1-2):646-657.
[21] Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Sep Purif Technol, 2009, 65(2):164-172.
[22] Li Y, Liu J, Chen H, et al. Preparation of LTA zeolite membranes with few non-zeolite pores using microwave heating[J]. Chin J Catal, 2006, 27(7):544-546.
[23] Zah J, Krieg HM, Breytenbach JC. Layer development and growth history of polycrystalline zeolite A membranes synthesised from a clear solution[J]. Microporous Mesoporous Mater, 2006, 93(1-3):141-150.
[24] Xu XH, Yang WH, Liu J, et al. Synthesis of NaA zeolite membrane by microwave heating[J]. Sep Purif Technol, 2001, 25(1-3):241-249.
[25] Zhou R, Li Y, Liu B, et al. Preparation of chabazite membranes by secondary growth using zeolite-T-directed chabazite seeds[J]. Microporous Mesoporous Mater, 2013, 179:128-135.
[26] Hu N, Li Y, Zhong S, et al. Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents[J]. Microporous Mesoporous Mater, 2016, 228:22-29.
[27] Chew TL, Ahmad AL, Bhatia S. Rapid synthesis of thin SAPO-34 membranes using microwave heating[J]. J Porous Mater, 2011, 18(3):355-360.
[28] Sebastian V, Mallada R, Coronas J, et al. Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite-ceramic membranes for pervaporation application[J]. J Membr Sci, 2010, 355(1-2):28-35.
[29] 李显明, 王正宝. 微波合成b轴取向MFI型分子筛膜[J]. 石油学报(石油加工), 2009, 25(S2):65-69.
[30] Baig MA, Patel F, Alhooshani K, et al. In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support[J]. J Cryst Growth, 2015, 432:123-128.
[31] Stoeger JA, Palomino M, Agrawal KV, et al. Oriented CoSAPO-5 membranes by microwave-enhanced growth on TiO2-coated porous alumina[J]. Angew Chem Int Ed, 2012, 51(10):2470-2473.
[32] Coutinho D, Losilla JA, Balkus KJ. Microwave synthesis of ETS-4 and ETS-4 thin films[J]. Microporous Mesoporous Mater, 2006, 90(1-3):229-236.
[33] Liu Y, Li Y, Cai R, et al. Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation[J]. Chem Commun, 2012, 48(54):6782-6784.
[34] Slangen PM, Jansen JC, vanBekkum H. The effect of ageing on the microwave synthesis of zeolite NaA[J]. Microporous Mater, 1997, 9(5-6):259-265.
[35] Motuzas J, Heng S, Lau PPSZ, et al. Ultra-rapid production of MFI membranes by coupling microwave-assisted synthesis with either ozone or calcination treatment[J]. Microporous Mesoporous Mater, 2007, 99(1-2):197-205.
[36] Madhusoodana CD, Das RN, Kameshima Y, et al. Microwave-assisted hydrothermal synthesis of zeolite films on ceramic supports[J]. J Mater Sci, 2006, 41(5):1481-1487.
[37] Motuzas J, Julbe A, Noble RD, et al. Rapid synthesis of oriented silicalite-1 membranes by microwave-assisted hydrothermal treatment[J]. Microporous Mesoporous Mater, 2006, 92(1-3):259-269.
[38] Bukhari SS, Behin J, Kazemian H, et al. Synthesis of zeolite NA-A using single mode microwave irradiation at atmospheric pressure: The effect of microwave power[J]. Can J Chem Eng, 2015, 93(6):1081-1090.
[39] Behin J, Bukhari SS, Dehnavi V, et al. Using coal fly ash and wastewater for microwave synthesis of LTA zeolite[J] Chem Eng Technol, 2014, 37(9):1532-1540.
[40] Liu Y, Qiang W, Ji T, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci Adv, 2020, 6(7):eaay5993
[41] Tang Z, Kim S-J, Gu X, et al. Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents[J]. Microporous Mesoporous Mater, 2009, 118(1-3):224-231.
[42] Xiao W, Chen Z, Zhou L, et al. A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating[J]. Microporous Mesoporous Mater, 2011, 142(1):154-160.
[43] Wang M, Bai L, Li M, et al. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating[J]. J Membr Sci, 2019, 572:567-579.
[44] Shi H. Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2-CH4 separation[J]. RSC Adv, 2015, 5(48):38330-38333.
[45] Chew TL, Ahmad AL, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation[J]. Chem Eng J, 2011, 171(3):1053-1059.
[46] Chew TL, Ahmad AL, Bhatia S. Microwave heating-synthesized zeolite membrane for CO2/CH4 separation[J]. Desalination Water Treat, 2012, 47(1-3):139-149.
[47] Sun K, Liu B, Zhong S, et al. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Sep Purif Technol, 2019, 219:90-99.
[48] 王金渠, 杨建华, 陈赞,等. 沸石分子筛膜苛刻环境有机物脱水的研究进展[J]. 膜科学与技术, 2011, 31(03):118-126.
[49] 胡子益, 李洪波, 谭宇鑫,等. 微波合成的NaA型分子筛膜在乙醇脱水中试及3万吨/年工业示范装置的蒸汽渗透性能研究[J]. 化工进展, 2016, 35(S2):438-442.
[50] Ling WS, Thian TC, Bhatia S. Synthesis, characterization and pervaporation properties of microwave synthesized zeolite A membrane[J]. Desalination, 2011, 277(1-3):383-389.
[51] 胡秋玮, 周志辉, 向晓东. 煤系高岭土微波合成NaA分子筛膜及其性能与表征[J]. 膜科学与技术, 2012, 32(03):34-38+43.
[52] Yu L, Zeng C, Wang C, et al. In situ impregnation gelation hydrothermal crystallization synthesis of hollow fiber zeolite NaA membrane[J]. Microporous Mesoporous Mater, 2017, 244:278-283.
[53] Zhu G, Li Y, Zhou H, et al. FAU-type zeolite membranes synthesized by microwave assisted in situ crystallization[J]. Mater Lett, 2008, 62(28):4357-4359.
[54] Zhu G, Li Y, Zhou H, et al. Microwave synthesis of high performance FAU-type zeolite membranes: Optimization, characterization and pervaporation dehydration of alcohols[J]. J Membr Sci, 2009, 337(1-2):47-54.
[55] Hu N, Zheng Y, Yang Z, et al. Microwave synthesis of high-flux NaY zeolite membranes in fluoride media[J]. RSC Adv, 2015, 5(106):87556-87563.
[56] Zhou H, Li Y, Zhu G, et al. Preparation of zeolite T membranes by microwave-assisted in situ nucleation and secondary growth[J]. Mater Lett, 2009, 63(2):255-257.
[57] Zhou H, Li Y, Zhu G, et al. Microwave synthesis of a&b-oriented zeolite T membranes and their application in pervaporation-assisted esterification[J]. Chin J Catal, 2008, 29(7):592-594.
[58] Li L, Yang J, Li J, et al. Synthesis of high performance mordenite membranes from fluoride containing dilute solution under microwave-assisted heating[J]. J Membr Sci, 2016, 512:83-92.
[59] Zhao C, Liu X, Zhang B. Submicrometer-thick b-oriented Fe-silicalite-1 membranes: microwave-assisted fabrication and pervaporation performances[J]. RSC Adv, 2016, 6(110):108265-108269.
[60] Jeon Y, Gicheon L, Chu YH, et al. Microwave-assisted TS-1 membrane for the separation of ethylbenzene from xylene mixture[J]. Membr J, 2012, 22(2):120-127.
[61] Jeon Y, Park SS, Choi S, et al. Preparation of nano-zeolite tubular membrane for ethylbenzene separation from ternary mixed xylene by microwave functional coating method[J]. J Porous Mater, 2014, 21(2):177-187.
[62] Huang A, Yang W. Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating[J]. Mater Lett, 2007, 61(29):5129-5132.
[63] Li Y, Chen H, Liu J, et al. Microwave synthesis of LTA zeolite membranes without seeding[J]. J Membr Sci, 2006, 277(1-2):230-239.
[64] Chen XB, Yang WS, Liu J, et al. Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation[J]. J Membr Sci, 2005, 255(1-2):201-211.
[65] Chen XB, Yang WS, Liu J, et al. Characterization of the formation of NaA zeolite membrane under microwave radiation[J]. J Mater Sci, 2004, 39(2):671-673.
[66] Xiao W, Zhao L, Liu J, et al. Synthesis of silicalite-1 zeolite membranes under microwave heating[J]. J Chin Ceram Soc, 2015, 2(01):44-52.
[67] Drobek M, Motuzas J, van Loon M, et al. Coupling microwave-assisted and classical heating methods for scaling-up MFI zeolite membrane synthesis[J]. J Membr Sci, 2012, 401:144-151.
[68] Cheng Z, Liu Y. Microwave-assisted synthesis and permeation performance of NaA zeolite membrane by secondary growth method[J]. Adv Mat Res, 2014, 1053:389-393.
[69] Bing L, Liu X, Zhang B. Synthesis of thin CrAPSO-34 membranes by microwave-assisted secondary growth[J]. J Mater Sci, 2016, 51(3):1476-1483.
[70] Bing L, Wang G, Wang F, et al. Preparation of a preferentially oriented SAPO-34 membrane by secondary growth under microwave irradiation[J]. RSC Adv, 2016, 6(61):56170-56173.
[71] 郝阿辉, 刘晓红, 刘秀凤,等. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 68(02):716-722.
[72] Hirota Y, Tamura S, Shimoyama Y, et al. Effect of rapid heating on microwave-assisted synthesis of SAPO-34 membranes[J]. Kagaku Kogaku Ronbunshu, 2015, 41(4):228-232.
[73] Liu X, Du S, Zhang B. The seeded growth of dense and thin SAPO-34 membranes on porous alpha-Al2O3 substrates under microwave irradiation[J]. Mater Lett, 2013, 91:195-197.
[74] Kunnakorn D, Rirksomboon T, Aungkavattana P, et al. Performance of sodium A zeolite membranes synthesized via microwave and autoclave techniques for water-ethanol separation:Recycle-continuous pervaporation process[J]. Desalination, 2011, 269(1-3):78-83.
[75] 袁文辉, 陈华荣, 李莉,等. PEI-NaA/α-Al2O3复合支撑分子筛膜的微波水热合成[J]. 精细化工, 2010, 27(05):421-424+432.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号