界面耦合法制备配位纳滤膜
作者:王乾,王广睿,赵寅,孙世鹏
单位: 南京工业大学化工学院,材料化学工程国家重点实验室,江苏 南京 211816
关键词: 纳滤膜;配位膜;界面耦合;表面修饰
出版年,卷(期):页码: 2021,41(2):1-8

摘要:
传统纳滤膜主要通过界面聚合法制备,其分离层与基膜之间的而结合力为分子间作用力较为薄弱。本工作通过在分离层与基膜之间引入配位键,采用金属-有机配位技术在聚酰亚胺基膜上制备了具有纳滤性能的分离层。首先通过考察氢氧化钠溶液的浓度和反应时间对于基膜形貌和基团的影响,优化基膜的修饰程度,确定最佳的氢氧化钠溶液浓度为0.01 mol/L,修饰时间为9 min。然后通过Fe3+与Na+之间的置换将配位中心Fe3+引入基膜表面。最后考察不同金属配位中心与有机配体之间的比例对膜性能的影响,确定最优植酸与铁离子的摩尔比例为3:7。制得的配位纳滤膜表面负电性与亲水性都得到增强。制得的膜对Na2SO4截留率为85.6%,通量为5.3 L m-2h-1bar-1,对多种染料的截留率在99%以上,且具有较好的长期稳定性。
Traditional thin-film composite nanofiltration membranes fabricated by interfacial polymerization possess intermolecular force as the interaction between the active layer and substrate. This may lead to the peel-off of the active layer during the working process. In this work, based on the introduction of the coordination bond between the active layer and substrate, the active layer with nanofiltration performance was fabricated on a polyimide substrate by metal-organic coordination technology. Firstly, the modification degree of the substrate was optimized by investigating the effect of the NaOH concentration and the reaction time on the morphology and functional groups of the substrate surface. The optimum concentration and reaction time are 0.01 mol/L and 9 min respectively. Then, the coordination center Fe3+ was introduced to the substrate by replacing the Na+ on the modified substrate with Fe3+. Finally, the effect that the ratio of metal coordination centers and organic ligands has on the membrane performance were studied, and the optimized mole ratio of PA and Fe3+ is 3:7. The hydrophilicity and negative charge of the obtained membrane are both enhanced. The rejection and permeability of the coordination nanofiltration membrane towards 1000 ppm Na2SO4 solution is 85.6% and 5.3 L m-2h-1bar-1 respectively. Additionally, the membranes have a high rejection towards a variety of dyes and excellent long-term stability.
王乾(1993-),男,江苏盐城人,博士研究生,研究方向为有机纳滤膜的制备及应用, E-mail:chandler@njtech.edu.cn

参考文献:
[1] Wang, K Y; Chung, T-S. Polybenzimidazole nanofiltration hollow fiber for cephalexin separation[J]. AIChE J, 2006, 52 (4): 1363-1377.
[2] 梁懿之; 王肖肖; 李灿, et al. 界面聚合法制备高通量复合耐溶剂纳滤膜[J]. 膜科学与技术, 2019, 39 (04): 38-46.
[3] 汪林; 纪树兰; 王乃鑫, et al. 用于有机溶剂体系分离的氧化石墨烯基复合膜的构筑[J]. 膜科学与技术, 2020, 40 (01): 352-359.
[4] Shao, L; Cheng, X Q; Liu, Y, et al. Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal[J]. J Membr Sci, 2013, 430: 96-105.
[5] Wang, K Y; Chung, T S; Rajagopalan, R. Novel Polybenzimidazole (PBI) Nanofiltration Membranes for the Separation of Sulfate and Chromate from High Alkalinity Brine To Facilitate the Chlor-Alkali Process[J]. Ind Eng Chem Res, 2007, 46 (2017): 1572-1578.
[6] Cheng, X Q; Zhang, C; Wang, Z X, et al. Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification[J]. J Membr Sci, 2016, 499: 326-334.
[7] Sun, S P; Hatton, T A; Chan, S Y, et al. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water[J]. J Membr Sci, 2012, 401-402: 152-162.
[8] Gao, J; Sun, S-P; Zhu, W-P, et al. Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal[J]. J Membr Sci, 2014, 452: 300-310.
[9] Liu, C; Shi, L; Wang, R. Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications[J]. React Funct Polym, 2015, 86: 154-160.
[10] Wang, Z-Y; Fu, Z-J; Shao, D-D, et al. Bridging the miscibility gap to fabricate delamination-free dual-layer nanofiltration membranes via incorporating fluoro substituted aromatic amine[J]. J Membr Sci, 2020, 610: 118270.
[11] 任翘楚; 汤永健; 许振良. 界面聚合法中空纤维含氟聚酰胺纳滤膜制备与表征[J]. 膜科学与技术, 2016, 36 (03): 93-97.
[12] You, X; Wu, H; Zhang, R, et al. Metal-coordinated sub-10 nm membranes for water purification[J]. Nat Commun, 2019, 10 (1): 4160.
[13] Sun, S P; Chung, T S. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation[J]. Environ Sci Technol, 2013, 47 (22): 13167-74.
[14] Cai, J; Cao, X-L; Zhao, Y, et al. The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine[J]. J Membr Sci, 2020, 600: 117863.
[15] Tsuruoka, T; Kumano, M; Mantani, K, et al. Interfacial Synthetic Approach for Constructing Metal–Organic Framework Crystals Using Metal Ion-Doped Polymer Substrate[J]. Cryst Growth Des, 2016, 16 (5): 2472-2476.
[16] Cao, X L; Guo, J L; Cai, J, et al. The encouraging improvement of polyamide nanofiltration membrane by cucurbituril‐based host–guest chemistry[J]. AIChE J, 2019, 66 (4): 1-11.
[17]  Abdul Hamid, M R; Park, S; Kim, J S, et al. In situ formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates[J]. J Mater Chem A, 2019, 7 (16): 9680-9689.
[18] Ba, C; Langer, J; Economy, J. Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration[J]. J Membr Sci, 2009, 327 (1-2): 49-58.
[19] Ikeda, S; Akamatsu, K; Nawafune, H, et al. Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers[J]. J Phys Chem B, 2004, 108 (40): 15599-15607.
[20] Ejima, H; Richardson, J J; Liang, K, et al. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering[J]. Science, 2013, 341 (6142): 154-157.
[21] Cao, X-L; Zhou, F-Y; Cai, J, et al. High-permeability and anti-fouling nanofiltration membranes decorated by asymmetric organic phosphate[J]. J Membr Sci, 2021, 617: 118667.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号