碳分子筛膜的微观结构调变与气体分离性能优化研究进展
作者:樊燕芳,王启祥,崔峻巍
单位: 中国石油大学(北京)化学工程与环境学院,北京 102200;中国石油新疆油田分公司实验检测研究院,新疆克拉玛依 834000
关键词: 气体分离;碳分子筛膜;结构调控;性能优化;规模化制备
出版年,卷(期):页码: 2021,41(2):117-126

摘要:
 碳分子筛膜(CMS)作为新型无机多孔膜,其高渗透系数、高选择性的优势使其具有代替传统气体膜分离材料的广阔前景。深刻认知CMS膜的形成机理;阐明前驱体结构与CMS的微观结构与分离性能的关联机制能够实现CMS膜的微观结构调控、气体分离性能优化的目标。本文系统总结了近十年来CMS膜的制备工艺、新型CMS膜前驱体的选择思路及设计制备现状,重点介绍了基于聚酰亚胺、自具微孔聚合物的CMS膜的制备;探讨了实现CMS膜性能优化的主要调控手段,着重介绍了前驱体交联改性对CMS膜结构与性能的调控;通过分析CMS膜实现放大生产的制约因素,总结了CMS膜规模化制备的研究进展;并提出了可行的CMS膜结构调控手段,并对未来可工业化CMS膜的研究和制备提出合理展望。
  As one new type of inorganic porous membranes, carbon molecular sieve membrane with its advantages of high permeability and selectivity holds great potential to replace the conventional gas separation membranes. Fundamental understanding of the formation mechanism of CMS membranes and clarifying the correlation between precursor performance and CMS microstructure and separation performance can achieve the goal of microstructure control and optimization of gas separation performance. This paper systematically summarizes research progress on preparation process of CMS membrane in the past ten years, various precursors based CMS developments and the current situation of design and preparation. The preparation of CMS membranes based on polyimide and Polymer of Intrinsic Microporous was specifically discussed. Research work on tailoring CMS membrane microstructure and performance optimization was also discussed with the focus on precursor cross-linking modification. The research progress of large-scale CMS membrane preparation is summarized. The feasible CMS membrane structure control methods are proposed, and future developments of large-scale CMS membranes preparation are proposed.
通讯作者:樊燕芳(1985-),女,山西原平人,副教授,硕士生导师,从事先进膜材料、膜分离技术研究。E-mail:yanfang.fan@cup.edu.cn

参考文献:
 [1] Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532: 435-437
[2] Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes[J]. J Membr Sci, 2010, 359: 2-10
[3] Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nat Mater, 2017, 16: 289-297
[4] 金万勤 徐南平. 限域传质分离膜. 化工学报, 2018, 69: 50-56
[5] 王学瑞, 张春, 张玉亭,等. 中空纤维分子筛膜制备与应用研究进展. 膜科学与技术, 2020, 40: 313-321
[6] 刘露月, 吕荥宾, 刘壮,等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展. 膜科学与技术, 2020, 40: 228-239
[7] 刘垚, 吕陈美, 朱玲,等. 沸石分子筛膜合成的新方法. 膜科学与技术, 2020, 40: 145-150
[8] Kim Y K, Park H B, Lee Y M. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone[J]. J Membr Sci, 2005, 251: 159-167
[9] Shin J H, Yu H J, Park J, et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. J Membr Sci, 2020, 598: 117660
[10] 徐瑞松, 李琳, 侯蒙杰,等. 新型炭基膜材料前驱体聚合物的研究进展. 膜科学与技术, 2020, 40: 250-259
[11] Hamm J B S, Ambrosi A, Griebeler J G, et al. Recent advances in the development of supported carbon membranes for gas separation[J]. Int. J. Hydrog. Energy, 2017, 42: 24830-24845
[12] Koresh J E, Sofer A. Molecular sieve carbon permselective membrane. Part I. presentation of a new device for gas mixture separation. Separation Science, 1983, 18: 723-734
[13] Fu S, Wenz G B, Sanders E S, et al. Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes[J]. J Membr Sci, 2016, 520: 699-711
[14] Qiu W, Zhang K, Li F S, et al. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide [J]. ChemSusChem, 2014, 7: 1186-1194
[15] Salleh W N W, Ismail A F. Effects of carbonization heating rate on CO2 separation of derived carbon membranes[J]. Sep Purif Technol, 2012, 88: 174-183
[16] Kamath M G, Fu S, Itta A K, et al. 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena[J]. J Membr Sci, 2018, 546: 197-205
[17] Karunaweera C, Musselman I H, Balkus K J, et al. Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA[J]. J Membr Sci, 2019, 581: 430-438
[18] Salleh W N W, Ismail A F, Matsuura T, et al. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A Review[J]. Sep Purif Rev, 2011, 40: 261-311
[19] Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide.[J]. J Phys Chem. B, 1997, 101: 3988-3994
[20] Fu S, Sanders E S, Kulkarni S S, et al. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors[J]. J Membr Sci, 2015, 487: 60-73
[21] Ning X, Koros W J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon, 2014, 66: 511-522
[22] Kiyono M, Williams P J, Koros W J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon, 2010, 48: 4432-4441
[23] Williams P J. Analysis of factors influencing the performance of CMS membranes for gas separation. thesis[D]. Georgia Tech, 2006
[24] Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. J Membr Sci, 2004, 229: 117-127
[25] Zhang C, Koros W J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties[J].J Adv Mater 2017, 29: 1701631
[26] McKeown N B, Budd P M, Msayib K J, et al. Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials [J]. Chem Eur J., 2005, 11: 2610-2620
[27] Yang Z, Guo R, Malpass-Evans R, et al. Highly conductive anion-exchange membranes from microporous tröger's base polymers[J]. Angew. Chem. Int. Ed, 2016, 55: 11499-11502
[28] Xiao Y, Zhang L, Xu L, et al. Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas separation[J]. J Membr Sci, 2017, 521: 65-72
[29] Wang Z, Ren H, Zhang S, et al. Carbon molecular sieve membranes derived from Tröger's base-based microporous polyimide for gas separation[J]. ChemSusChem, 2018, 11: 916-923
[30] Hazazi K, Ma X, Wang Y, et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor[J]. J Membr Sci, 2019, 585: 1-9
[31] Ma X, Swaidan R, Teng B, et al. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon, 2013, 62: 88-96
[32] Salinas O, Ma X, Litwiller E, et al. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)[J]. J Membr Sci, 2016, 504: 133-140
[33] Salinas O, Ma X, Litwiller E, et al. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide[J]. J Membr Sci, 2016, 500: 115-123
[34] Salinas O, Ma X, Wang Y, et al. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity[J]. RSC Adv, 2017, 7: 3265-3272
[35] Swaidan R, Ma X, Litwiller E, et al. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity[J]. J Membr Sci, 2013, 447: 387-394
[36] Wang Q, Huang F, Cornelius C, et al. Carbon molecular sieve membranes from cross-linkable polyimides for CO2/CH4 and C2H4/C2H6 separation[J]. J Membr Sci, 2020, 118785. 
[37] Fu S, Sanders E S, Kulkarni S S, et al. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon, 2015, 95: 995-1006
[38] Chu Y-H, Yancey D, Xu L, et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations[J]. J Membr Sci, 2018, 548: 609-620
[39] Liao K-S, Japip S, Lai J-Y, et al. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification[J]. J Membr Sci, 2017, 534: 92-99
[40] Jiao W, Ban Y, Shi Z, et al. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices[J]. Chem Commun, 2016, 52: 13779-13782
[41] Zhang C, Kumar R, Koros W J. Ultra-thin skin carbon hollow fiber membranes for sustainable molecular separations[J].AlChE J, 2019, 65: e16611
[42] Bhuwania N, Labreche Y, Achoundong C S K, et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon, 2014, 76: 417-434
[43] Karvan O, Johnson J R, Williams P J, et al. A pilot-scale system for carbon molecular sieve hollow fiber membrane manufacturing[J]. Chem Eng., 2013, 36: 53-61
[44] Richter H, Voss H, Kaltenborn N, et al. High-flux carbon molecular sieve membranes for gas separation[J]. Angew Chem Int Ed, 2017, 56: 7760-7763

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号