孔道修饰MOF-808混合基质膜制备及其CO2分离性能
作者:张萌萌,郭翔宇,黄宏亮,仲崇立
单位: 天津工业大学省部共建分离膜与膜过程国家重点实验室,化学与化工学院,天津 300387
关键词: 金属-有机骨架材料;混合基质膜;CO2分离;后合成修饰
出版年,卷(期):页码: 2021,41(3):1-8

摘要:
 利用MOF-808结构中含有易于被取代的甲酸这一特性,选用一种结构中含有丰富含氮基团的羧酸分子,L-组氨酸,对微波法合成的MOF-808纳米颗粒进行了后合成改性修饰,在其孔道中引入了对CO2具有较高亲和力的含氮官能团。进一步采用孔道修饰后的MOF-808(MOF-808-His)与6FDA-DAM复合制备了一种新型混合基质膜,结合气体分离性能测试与膜的微观结构表征系统地分析了孔道修饰对MOF-808/6FDA-DAM混合基质膜CO2分离性能的影响。结果表明,MOF-808孔道内含氮官能团的引入能够明显改善其对CO2的选择性吸附能力,进而提高混合基质膜的CO2/CH4分离性能。当MOF-808-His质量分数为10%时,混合基质膜的CO2渗透通量为764 Barrer,CO2/CH4分离因子为32.4,比纯6FDA-DAM膜分别提高了104%和35%,超过了CO2/CH4分离的Robeson上限。
 The formic acid molecules coordinated to Zr-O clusters in MOF-808 can be easily substituted through post-synthetic modification, providing an efficient way for the engineering of its pore environment. Here, L-histidine (His), a carboxylic acid molecule with rich nitrogen-containing groups, was selected to modify the MOF-808 nanoparticles synthesized through microwave method in this work. CO2 adsorption isotherms indicate that introducing His with nitrogen-containing functional groups into the pore channels of MOF-808 can improve its CO2 affinity and CO2/CH4 separation. Furthermore, a new type of mixed matrix membranes (MMMs) was prepared through the combination of MOF-808-His and 6FDA-DAM. The effect of pore modification on CO2 separation performance of MOF-808/6FDA-DAM MMMs was systematically analyzed by gas separation performance tests and membrane microstructure characterization. The results show that the introduction of His in MOF-808 can significantly improve its selective adsorption capacity towards CO2, and thus improve the CO2/CH4 separation performance of the MMMs. When 10 wt% MOF-808-His nanoparticles were incorporated, the CO2 permeability of the membrane was 764 Barrer, and the CO2/CH4 separation factor was 32.4, which was 104% and 35% respectively higher than that of the pure 6FDA-DAM membrane, exceeding the Robeson upper bound for CO2/CH4 separation.
第一作者:张萌萌(1994—),女,河北邢台人,硕士研究生,主要研究方向为MOF基复合膜的制备

参考文献:
 [1] Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art[J]. Ind Eng Chem Res, 2009, 48(10): 4638-4663.
[2] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J Membr Sci, 1991, 62: 165-185.
[3] Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320(1-2): 390-400.
[4] Chung T S, Jiang L Y, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog Polym Sci, 2007, 32(4): 483-507.
[5] Aroon M A, Ismail A F, Matsuura T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Sep Purif Technol, 2010, 75(3): 229-242.
[6] Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions[J]. Prog Polym Sci, 2014, 39(5): 817-861.
[7] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
[8] Seoane B, Coronas J, Gascon J, et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?[J]. Chem Soc Rev, 2015, 44(8): 2421-2454.
[9] Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2): 869-932.
[10] Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev, 2012, 112(2): 724-781.
[11] Cheng Y, Ying Y, Japip S, et al. Advanced porous materials in mixed matrix membranes[J]. Adv Mater, 2018, 30(47): 1802401.
[12] Danny M S, Moreton J C, Benz L, et al. Metal-organic frameworks for membrane-based separations[J]. Nat Rev Mater, 2016, 1(12): 16078.
[13] Bae T H, Lee J S, Qiu W, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew Chem Int Ed, 2010, 49(51): 9863-9866.
[14] Guo X, Huang H, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J Membr Sci, 2015, 478: 130-139.
[15] Hwang S, Semino R, Seoane B, et al. Revealing the transient concentration of CO2 in a mixed-matrix membrane by IR microimaging and molecular modeling[J]. Angew Chem Int Ed, 2018, 57(18): 5156-5160.
[16] Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal–organic frameworks and related materials[J]. J Am Chem Soc, 2014, 136(11): 4369-4381.
[17] Batchman J E, Smith Z P, Li T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals[J]. Nat Mater, 2016, 15(8): 845-849.
[18] Li Z Q, Yang J C, Sui K W, et al. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Mater Lett, 2015, 160: 412-414.
[19] Baek J, Rungtaweevoranit B, Pei X, et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol[J]. J Am Chem Soc, 2018, 140(51): 18208-18216.
[20] 郭翔宇, 阳庆元. 含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报, 2017, 68(11): 4323-4332.
[21] Stern S A. The “Barrer” permeability unit[J]. J Polym Sci Pol Phys, 1968, 6: 1933-1934.
[22] Koros W J, Ma Y H, Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996)[J]. Pure Appl Chem, 1996, 68: 1479-1489.
[23] Souza V C, Quadri M G N. Organic-inorganic hybrid membranes in separation processes: A 10-year review[J]. Braz J Chem Eng, 2013, 30(4): 683-700.
[24] Hua Y, Wang H, Li Q, et al. Highly efficient CH4 purification by LaBTB PCP-based mixed matrix membranes[J]. J Mater Chem A, 2018, 6(2): 599-606.
[25] Zornoza B, Martinez-Joaristi A, Serra-Crespo P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chem Commun, 2011, 47(33): 9522-9524.
[26] Chen X Y, Vinh-Thang H, Rodrigue D, et al. Amine-functionalized MIL-53 metal-organic framework in polyimide mixed matrix membranes for CO2/CH4 separation[J]. Ind Eng Chem Res, 2012, 51(19): 6895-6906.
[27] Japip S, Wang H, Xiao Y, et al. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation[J]. J Membr Sci, 2014, 467: 162-174.
[28] Ban Y, Li Z, Li Y, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angew Chem Int Ed, 2015, 54(51): 15483-15487.
[29] Xiang L, Sheng L, Wang C, et al. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Adv Mater, 2017, 29(32): 1606999.
[30] Sabetghadam A, Seoane B, Keskin D, et al. Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance[J]. Adv. Funct Mater, 2016, 26(18): 3154-3163.
[31] Boroglu M S, Yumru A B. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation[J]. Sep Purif Technol, 2017, 173: 269-279.
[32] Ahmad M Z, Peters T A, Konnertz N M, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J]. Sep Purif Technol, 2020, 230: 115858.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号