静电喷雾辅助交联制备超薄复合膜及其性能研究
作者:张晟宁,张昊,黄志浩,刘伟良,李文轩,马晓华
单位: 化学工程国家重点实验室,华东理工大学膜科学与工程研发中心,上海 200237
关键词: 静电喷雾;交联;聚乙烯亚胺;超薄复合膜;染料分离
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(3):29-36

摘要:
 本文采用静电喷雾辅助交联聚合物制备了超薄聚乙烯亚胺(PEI)/戊二醛(GA)复合膜。考察了PEI浓度、电喷雾时间等对PEI/GA复合膜物理化学性质和分离性能的影响。通过SEM、AFM、FTIR、接触角和Zeta电位对复合膜的微观形貌、交联反应、亲水性和荷电性进行了表征。选用阳离子染料通过错流装置对复合膜的分离性能进行了测试。结果表明,采用静电喷雾辅助交联法成功制备出表面均匀致密、粗糙度小、亲水性得到明显改善的荷正电的PEI/GA复合膜,该膜对阳离子染料亚甲基蓝(MLB)和结晶紫(CV)的截留率分别可达到95.1%和97.5%。通过改变PEI浓度和电喷雾时间可有效调控复合膜的分离性能,以满足更广泛的应用需求。
 In this paper, a thin-film polyethyleneimine (PEI)/glutaraldehyde (GA) composite membrane was prepared through electrospray-assisted crosslinking method. The effects of PEI concentration and electrospray time on the physical and chemical properties and separation performance of the PEI/GA composite membrane were studied. The microscopic morphology, crosslinking reaction, hydrophilicity and chargeability of the composite membrane were characterized by SEM, AFM, FTIR, contact angle and Zeta potential. The separation performance of the composite membrane was tested by using cationic dyes through a cross-flow device. The results showed that the positively charged PEI/GA composite membrane with uniform and compact surface, small roughness, and significantly improved hydrophilicity was successfully prepared through the electrospray-assisted crosslinking method. The rejection for the cationic dyes methylene blue (MLB) and crystal violet (CV) reached 95.1% and 97.5%, respectively. By changing the PEI concentration and electrospray time, the separation performance of the composite membrane can be effectively controlled to meet the needs of a wider range of applications

基金项目:
国家自然科学基金(21978081)

作者简介:
张晟宁(1996-),男,上海人,硕士研究生,研究方向为纳滤膜的制备与改性

参考文献:
 [1] Saxena G, Chandra R, Bharagava R N: Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants, Devoogt P, editor, Reviews of Environmental Contamination and Toxicology, Vol 240, 2017: 31-69.
[2] 王进, 赵长伟, 吴珍, et al. 氧化石墨烯/聚哌嗪酰胺复合纳滤膜在染料脱除中的应用研究[J]. 膜科学与技术, 2016, 36(06): 86-94.
[3] Gao J, Thong Z, Wang K Y, et al. Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes[J]. Journal of Membrane Science, 2017, 541: 413-424.
[4] 梁懿之, 王肖肖, 李灿, et al. 界面聚合法制备高通量复合耐溶剂纳滤膜[J]. 膜科学与技术, 2019, 39(04): 38-46.
[5] Zhang S, Peh M H, Thong Z, et al. Thin Film Interfacial Cross-Linking Approach To Fabricate a Chitosan Rejecting Layer over Poly(ether sulfone) Support for Heavy Metal Removal[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 472-479.
[6] 张金苗, 贾瑞, 李树轩, et al. 共价层层自组装纳滤膜的制备及性能研究[J]. 膜科学与技术, 2020, 40(01): 139-147.
[7] Qi Y, Zhu L, Shen X, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J]. Separation and Purification Technology, 2019, 222: 117-124.
[8] Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water[J]. Journal of Membrane Science, 2015, 486: 169-176.
[9] Saeki D, Imanishi M, Ohmukai Y, et al. Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation[J]. Journal of Membrane Science, 2013, 447: 128-133.
[10] 侯影飞, 王金凤, 刘敏. PVA/PEI复合纳滤膜的制备及性能优化[J]. 膜科学与技术, 2016, 36(06): 53-60.
[11] Hu D, Huang H, Jiang R, et al. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite[J]. Journal of Hazardous Materials, 2019, 369: 483-493.
[12] Cho Y, Kim S, Lim H, et al. Experimental study of electrostatic spray modes of high-flowrate water with horizontal nozzle[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4563-4572.
[13] Ma X-H, Yang Z, Yao Z-K, et al. Interfacial Polymerization with Electrosprayed Microdroplets: Toward Controllable and Ultrathin Polyamide Membranes[J]. Environmental Science & Technology Letters, 2018, 5(2): 117-122.
[14] Ma X-H, Guo H, Yang Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570: 139-145.
[15] Sun X-F, Wang S-G, Cheng W, et al. Enhancement of acidic dye biosorption capacity on poly(ethylenimine) grafted anaerobic granular sludge[J]. Journal of Hazardous Materials, 2011, 189(1-2): 27-33.
[16] Li J, Yuan S, Zhu J, et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal[J]. Chemical Engineering Journal, 2019, 373: 275-284.
[17] Zhang H, Taymazov D, Li M-P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592.
[18] Liu Y, Chen G Q, Yang X, et al. Preparation of Layer-by-Layer Nanofiltration Membranes by Dynamic Deposition and Crosslinking[J]. Membranes, 2019, 9(2).
[19] Wang J, Zhu J, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. Journal of Materials Chemistry A, 2017, 5(28): 14847-14857.
[20] Wang Y, Zhu J, Dong G, et al. Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification[J]. Separation and Purification Technology, 2015, 150: 243-251.
[21] Lin J, Ye W, Baltaru M-C, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment[J]. Journal of Membrane Science, 2016, 514: 217-228.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号