自聚微孔聚合物低温碳捕集性能研究
作者:董馨瑶,吉文慧, 闫旭焕,李建新,马小华
单位: 1.天津工业大学 材料科学与工程学院 省部共建分离膜与膜过程国家重点实验室,天津300387
关键词: 自聚微孔聚合物;碳捕集;梯形聚合物;PTMSP;低温膜分离
出版年,卷(期):页码: 2021,41(3):44-51

摘要:
 膜法CO2捕集是解决当今世界碳排放的一个重要方法,低温膜分离是近年来兴起的一种高效CO2分离技术。本研究结合了自聚微孔聚合物高CO2透过率和低温下聚合物膜材料高CO2/N2选择性的特点来同时获得高CO2透过率以及CO2/N2 选择性的聚合物膜材料。首次探讨了高比表面自聚微孔聚合物PTMSP以及PIM-1在低温下CO2透过率以及CO2/N2的选择性之间的关系和内在影响因素。其中,PTMSP表现出CO2的透过率和CO2/N2的选择性随温度降低而同时增加。在 -30 oC,PTMSP的CO2的透过率为 25492 Barrer, CO2/N2的选择性为34,分离性能远超过最新的2019年上限。同时对其CO2/N2(15/85)混合气的低温(-30 oC)研究表明,混合气中CO2的渗透率在20000 Barrer以上, CO2/N2选择性约为32,是到目前为止最优秀的碳捕集膜材料之一。以上研究显示了PIM 材料在低温下具有良好的碳捕集应用潜力。
 Carbon capture is a critical problem all over the world. Sub-ambient temperature membrane-based separation technique is one of the promising methods to solve the CO2 capture and storage problems recently developed. In this work, we combined the highly CO2 permeable polymer of intrinsic microporosity and the low temperature technique to achieve polymer membranes with both high CO2 permeability and CO2/N2 selectivity for the first time. Highly porous PIM-1 and PTMSP were adopted for evaluation their sub-ambient temperature properties. Surprisingly, PTMSP demonstrated simultaneously increased CO2 permeability and CO2/N2 selectivity upon decreasing temperatures. At -30 oC, the PTMSP demonstrated a CO2 permeability of 25492 Barrer and CO2/N2 selectivity of 34, which is by far higher than the latest 2019 trade-off curve. Additionally, the CO2/N2 (15/85) mixed-gas demonstrated a CO2 permeability of ~20000 and CO2/N2 selectivity of 32, which is one of the best CO2 separation membranes ever reported. The using of PIMs at low temperature for CO2 separation showed great perspective in carbon capture and storage. 
董馨瑶(1999-),女,黑龙江佳木斯人,本科

参考文献:
 [1] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies [J]. Renew Sust Energ Rev 2014, 39: 426-443. 
[2] Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture [J]. Prog Energ Combust 2012, 38(3): 419-448.
[3] Iulianelli A, Drioli E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process Technol 2020, 206: 106464. -
[4] Baker RW, Low BT. Gas separation membrane materials: A perspective [J]. Macromolecules 2014, 47(20): 6999-7013.
[5] Park HB, Kamcev J, Robeson LM, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity [J]. Science 2017, 356 (6343).
[6] Li K H, Zhu Z Y, Cheng B W, et al. Research progress of polymer of intrinsic microporosity for gas separation membrane [J]. Membr Sci & Tech, 2020, 40(5):118-128.
[7] Ho MT, Allinson GW, Wiley DE. Reducing the cost of CO2 capture from flue gases using membrane technology [J]. Ind Eng Chem Res 2008, 47(5): 1562-1568.
[8] Budd PM, Ghanem BS, Makhseed S, et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J]. Chem Commun 2004(2): 230-231.
[9] Wang Y, Ma X, Ghanem BS, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations [J]. Mater Today Nano 2018, 3: 69-95.
[10] Rose I, Bezzu CG, Carta M, et al. Polymer ultrapermeability from the inefficient packing of 2D chains [J]. Nat Mater 2017, 16(9): 932-937.
[11] Robeson LM. The upper bound revisited [J]. J Membr Sci 2008, 320(1-2): 390-400.
[12] Swaidan R, Ghanem B, Pinnau I. Fine-Tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations [J]. ACS Macro Lett 2015, 4(9): 947-951.
[13] Comesaña-Gándara B, Chen J, Bezzu CG, et al. Redefining the robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity [J]. Energy Environ Sci 2019, 12(9): 2733-2740.
[14] Moll D. J, Burmester A.F, Young, T.C, et al. Gas separations utilizing glassy polymer membranes at sub-ambient temperatures, Dow Chemical Company, 1994, US Patent NO. 5,352,272.
[15] Hasse D, Kulkarni S, Sanders E, et al. CO2 capture by sub-ambient membrane operation [J]. Energy Procedia 2013, 37: 993-1003.
[16] Liu L, Qiu W, Sanders ES, et al. Post- combustion carbon dioxide capture via 6FDA /BPDA-DAM hollow fiber membranes at sub- ambient temperatures [J]. J Membr Sci 2016, 510: 447-454.
[17] Joglekar M, Itta AK, Kumar R, et al. Carbon molecular sieve membranes for CO2/N2 separations: Evaluating subambient temperature performance [J]. J Membr Sci 2019, 569: 1-6.
[18] Masuda T, Isobe E, Higashimura T, et al. Poly[1- (Trimethylsilyl)-1-Propyne] - a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas-permeability [J]. J Am Chem Soc 1983, 105(25): 7473-7474.
[19] Du N, Song J, Robertson GP, et al. Linear high molecular weight ladder polymer via fast polycondensation of 5,5',6,6'-tetrahydroxy- 3,3, 3',3'-tetramethylspirobisindane with 1,4- dicyano- tetrafluorobenzene [J]. Macromol Rapid Commu 2008, 29(10): 783-788.
[20] C. O'brien K, Koros WJ, Husk GR. Polyimide materials based on pyromellitic dianhydride for the separation of carbon dioxide and methane gas mixtures[J]. J Membr Sci 1988, 35(2): 217-230.
[21] Ghanem BS, Swaidan R, Litwiller E, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation [J]. Adv Mater 2014, 26(22): 3688-3692.
[22] Budd PM, Msayib KJ, Tattershall CE, et al. Gas separation membranes from polymers of intrinsic microporosity [J]. J Membr Sci 2005, 251(1-2): 263-269.
[23] Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer molecular sieve for membrane gas separations [J]. Science 2013, 339(6117): 303-307.
[24] Carta M, Croad M, Malpass-Evans R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers[J]. Adv Mater 2014, 26(21): 3526-3531.
[25] Fuoco A, Rizzuto C, Tocci E, et al. The origin of size-selective gas transport through polymers of intrinsic microporosity [J]. J Mater Chem A 2019, 7(35): 20121-20126.
[26] Fuoco A, Comesana-Gandara B, Longo M, et al. Temperature dependence of gas permeation and diffusion in triptycene-based ultrapermeable polymers of intrinsic microporosity [J]. ACS Appl Mater Inter 2018, 10(42): 36475-36482.
[27] Koros WJ, Fleming GK. Membrane-based gas separation [J]. J Membrane Sci 1993, 83(1): 1-80.
[28] Masuda T, Iguchi Y, Tang BZ, et al. Diffusion and solution of gases in substituted polyacetylene membranes [J]. Polymer 1988, 29(11): 2041-2049. 
[29] Li P, Chung TS, Paul DR. Gas sorption and permeation in PIM-1 [J]. J Membrane Sci 2013, 432: 50-57.
[30] Nagai K, Masuda T, Nakagawa T, et al. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions[J]. Prog Polym Sci 2001, 26(5): 721-798.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号