基于ZIF-8固定载体复合膜制备及CO2分离 性能研究
作者:冯孝权12,赵倩倩12,张亚涛12
单位: 1郑州大学化工学院,河南郑州450001; 2郑州市先进分离技术重点实验室,河南郑州450001
关键词: 滴涂法;ZIF-8;固定载体;复合膜;CO2分离
出版年,卷(期):页码: 2021,41(4):35-41

摘要:
 制备高效分离CO2/N2的气体分离膜,一直是气体膜分离领域中的研究热点。本文采用简便的滴涂制膜方法,以聚砜(PSf)超滤膜为底膜,聚二甲基硅氧烷(PDMS)为过渡层,在制备PVAm-PEA分离功能层过程中直接引入ZIF-8纳米颗粒,制备了高选择性分离CO2/N2的新型固定载体复合膜。通过表征和性能测试,考察分析ZIF-8及其含量对复合膜形貌与气体渗透性能的影响。结果表明,ZIF-8颗粒的加入,复合膜表面形貌较空白膜粗糙,CO2渗透速率降低了43%,CO2/N2分离因子增加了220%。在0.1 MPa条件下,ZIF-8含量为0.05wt%时,CO2渗透速率为59 GPU,CO2/N2分离因子为202。
  The preparation of CO2 separation membrane with high efficiency is one of unremitting pursuits and hot topics for researchers. PSf ultrafiltration membrane was used as the bottom membrane and PDMS was coated on the PSf bottom membrane as the "gutter layer", ZIF-8, a crystalline porous material, was introduced to prepare PVAm-PEA separate functional layer for efficient separation of CO2/N2 by drop-coating method. Through a series of characterization and tests, the effects of ZIF-8 and content on the gas permeation of CO2/N2 were investigated. Results showed that the surface morphology of the composite film was coarser than that of the blank film, the CO2 permeation reduces 43% and the separation coefficient of CO2/N2 increases 220%. The content of ZIF-8 is 0.05wt%, which the maximum separation factor can up to be 202, measured at 0.1MPa, and the maximum permeation rate of CO2 can also reach 59 GPU.
冯孝权(1989-02-28),男,河南濮阳人,博士研究生,从事膜分离技术的研究。

参考文献:
 [1] Zhu X, Tian C, Chai S, Nelson Kimberly, et al. New Tricks for Old Molecules: Development and Application of Porous N-doped, Carbonaceous Membranes for CO2 Separation [J]. Adv Mater, 2013, 25(30): 4152-4158
[2] Roh D K, Kim S J, Chi W S, et al. Dual-functionalized mesoporous TiO2 hollow nanospheres for improved CO2 separation membranes [J]. Chem Commun, 2014, 50(43):5717-5720. 
[3] Zhao S, Feron P H M, Deng L, Favre E,et al. Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments [J]. J Membr Sci, 2016, 511:180-206
[4] Cravillon J,Munzer S M,Lohmeier S J,et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J]. Chem Mater,2009,21(8):1410-1412.
[5] Yaghi O M. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations [J]. Off. Sci.  Res. Inf. Tech. Rep, 2012. 09. 
[6] Park K S, Ni Z, Adrien P. Côté, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc Natl Acad Sci USA, 2006, 103(27):10186-10191.
[7] 黄晓春, 张杰鹏, 陈小明. [Zn(bim)2]·(H2O)1.67:具有方钠石拓扑结构的金属-有机敞开骨架 [J].科学通报. 2003, 48, 1491-1494. 
[8] Hayashi H, Côté, Adrien P, Furukawa, Hiroyasu, et al. Zeolite A imidazolate frameworks [J]. Nat Mater, 2007, 6(7):501-506.
[9] Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture [J]. Science, 2008, 319(5865): 939-943.
[10] 赵祯霞,许锋,李忠.二次生长法制备ZIF-8膜及其对CO2/N2的分离性能[J].化工学报,2014,65(5):1673-1680.
[11] Sánchez L J, Beatriz Z, Téllez C, et al. Asymmetric polybenzimidazole membranes with thin selective skin layer containing ZIF-8 for H2 /CO2, separation at pre-combustion capture conditions [J]. J Membr Sci, 2018, 563:427-434.
[12] Ordoñez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. J Membr Sci, 2010, 361(1-2):28-37.
[13] Bachman J E, Smith Z P, Li T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals [J]. Nat Mater, 2016, 15(8): 845-850.
[14] Ban Y, Li Z, Li Y, et al. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture [J]. Angew. Chem. Int. Ed, 2015, 54(51):15483-15487.
[15] Hu L, Liu J, Zhu L, et al. Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly (ethylene oxide) for CO2 capture [J]. Sep Purif Technol, 2018: 205(31): 58-65
[16] Wang B,Ho W S,Figueroa J D,et al. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance [J]. Langmuir,2015,31(24):6894-6901
[17] Brown A J,Brunelli N A,Eum K,et al.Interfacial microfluidic processing of metal-organic framework hollow fiber membranes [J]. Science,2014,345(6192):72-75.
[18] Li H, Hou J, Bennett T D, et al. Templated growth of vertically aligned 2D metal-organic framework nanosheets [J]. J Mater Chem A, 2019, 7:5811-5818.
[19] Zhang Y, Wang H, Zhang Y, et al. Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2 /N2 separation [J]. Sep Purif Technol, 2017,189,128-137
[20] Gross A F,Sherman E,Vajo J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks [J]. Dalton T,2012,41:5458-5460.
[21] He M,Yao J,Liu Q,et al. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution [J]. Micropor and Mesopor Mat,2014,184:55-60
[22] Zhang X R, Zhang T, Wang Y H, et al. Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation [J]. J Membr Sci, 2018, 560: 38-46.
[23] 陈英波, 赵林飞, 王彪等. 沸石咪唑骨架材料(ZIF-8)的结构生长过程[J].天津工业大学学报, 2016, 35(5):1-4
[24] Schejn A,Balan L,Falk V,et al. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations [J]. Cryst Eng Comm,2014,16:4493-4500.
[25] James J B, Lin Y S. Thermal stability of ZIF-8 membranes for gas separations [J]. J Membr Sci, 2017, 532: 9-19.
[26] Pan Y,Zeng G,et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J].Chem Comm,2011,47:2071-2073.
[27] Hu Y,Kazemian H,Rohani S,et al.In situ high pressure study of ZIF-8 by FTIR spectroscopy [J]. Chem Comm,2011,47: 12694-12696.
[28] Yang Z, Liu L, Gui T, et al. Mean Residence Time of CO2 Molecules in Flexible ZIF-8 Cages Explored by Molecular Dynamics Simulations [J]. Chinese J Chem Phys, 2013, 26(5):553-557.
[29] Liao J, Wang Z, Gao C Y, et al. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation [J]. J Mater Chem A, 2015, 3:16746-16761.
[30] Deng L, Kim T J, Hägg M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J]. J Membr Sci, 2009, 340:154-163.
[31] Li S C, Wang Z, Yu X W et al, High-Performance Membranes with Multi-permselectivity for CO2 Separation [J]. Adv Mater, 2012, 24: 3196-3200. 
[32] Hosseinkhani O, Kargari A, Sanaeepur H. Facilitated transport of CO2 through Co (II)-S-EPDM ionomer membrane [J]. J Membr Sci, 2014, 469:151-161. 
[33] Yuan S, Wang Z, Qiao Z, et al. Improvement of CO?/N? separation characteristics of polyvinylamine by modifying with ethylenediamine [J]. J Membr Sci, 2011, 378:425-437.
[34] Yu Y W, Wang J H, Wang Y, et al, Polyethyleneimine-functionalized phenolphthalein based cardo poly (ether ether ketone) membrane for CO2 separation [J] J. Ind. Eng. Chem. 2020, 83:20-28. 
[35] Alsamani, A M S, Yi C H, Hu J Y et al, Preparation of vinyl amine-co-vinyl alcohol/polysulfone composite membranes and their carbon dioxide facilitated transport properties [J]. J. Appl. Polym. Sci, 2014.131.
[36] Sandru M, Kim T J, Hägg M B. High molecular fixed-site-carrier PVAm membrane for CO2 capture [J]. Desalination, 2009, 240(1-3):298-300. 
[37] Zhang X F, Hou T, Chen J et al, Facilitated Transport of CO2 Through the Transparent and Flexible Cellulose Membrane Promoted by Fixed-Site Carrier Composite hollow fiber membranes for CO2 capture [J]. ACS Appl. Mater. Interfaces 2018, 10: 24930-24936.
[38] Shen, Y.; Wang, H.; Zhang, X.; Zhang, Y. MoS2 Nanosheets Functionalized Composite Mixed Matrix Membrane for Enhanced CO2 Capture Via Surface Drop-Coating Method [J]. ACS Appl. Mater. Interfaces 2016, 8 (35), 23371-23378
[39] Dong G Y, Zhang Y T, Hou J W et al, Graphene Oxide Nanosheets Based Novel Facilitated Transport Membranes for Efficient CO2 Capture [J]. Ind. Eng. Chem. Res. 2016, 55: 5403-5414.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号