K2S2O8-Na2S2O3引发苯乙烯磺酸钠接枝阴离子交换膜改性
作者:李林林12,张蕾1,石绍渊234,曹仁强2,李玉娇2,曹宏斌235
单位: 1.天津科技大学化工与材料学院,天津 300457 2.中国科学院过程工程研究所绿色过程与工程重点实验室,北京 100190 3.中国科学院大学化学工程学院,北京 100049 4.中国科学院赣江创新研究院,赣州341000 5.天津化学化工协同创新中心,天津 300072
关键词: 阴离子交换膜、K2S2O8-Na2S2O3体系、化学接枝、抗污染性能
分类号: TQ425
出版年,卷(期):页码: 2021,41(4):57-64

摘要:
 通过K2S2O8-Na2S2O3氧化还原体系引发苯乙烯磺酸钠(SSS)接枝阴离子交换膜,用衰减全反射傅里叶变换红外光谱(ATR-FTIR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和接触角测量仪等对阴离子交换膜改性前后进行性质表征,并以十二烷基苯磺酸钠(SDBS)作为模型污染物进行污染实验,考察改性膜的抗污染性能及其稳定性。结果表明,苯乙烯磺酸钠(SSS)接枝后可有效改善阴离子交换膜表面的亲水性和负电荷密度,改性膜接触角由72°变为60°,表面电荷密度由+0.92mV变为-7.85mV,表明带负电荷的磺酸基团被成功接枝到阴膜表面。通过探究改性条件对改性膜性质的影响规律,发现当改性温度为35℃、单体浓度为1.0g/L、接枝时间为10min时改性效果最佳。该改性条件下获得的苯乙烯磺酸钠修饰阴离子交换膜抗污染能力明显提高 、稳定性良好且不影响其脱盐性能。
 Surface modification is an effective way to solve the surface fouling of anion exchange membranes. In this work, the K2S2O8-Na2S2O3 redox system was used to initiate the grafting of sodium styrene sulfonate (SSS) onto the surface of anion exchange membrane. The properties of anion exchange membrane before and after modification were characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscope (AFM) and a contact angle measuring instrument. Sodium dodecylbenzene sulfonate (SDBS) was used as a model pollutant to conduct fouling experiments to investigate the stability of the anti-fouling performance of the modified membrane. The characteristic absorption peak of the sulfonic acid group appears at 1032cm-1, which proves that sodium p-styrene sulfonate has been grafted to the surface of anion exchange membrane. After the membrane modification, the contact angle of modified AEMs decreases from 72° to 60° and the zeta potential changes from 0.92mV to -7.8mV, indicating that the grafting of sodium styrene sulfonate can effectively improve the hydrophilicity and negative charge density of the surface of modified anion exchange membrane. The optimized grafting conditions were obtained at 35℃, 1.0g/L of the grafting monomer concentration and 10min of the grafting time. Under the optimized grafting conditions, the obtained sodium p-styrene sulfonate modified AEM has improved its anti-fouling ability, with good stability and does not affect its desalination performance.

基金项目:
国家自然科学基金(51878645);河北省重点研发计划项目(20373605D);2020年赣州市科技计划项目[赣市科发(2020) 60号]

作者简介:
李林林(1995-),女,河南安阳,学生,硕士研究生,硕士,化学工程,E-mail:15093247306@163.com

参考文献:
 [1] Ran J, Wu L, He Y, et al. Ion Exchange Membranes: New Developments and Applications[J]. Journal of Membrane Science, 2017, 522:267-291.
[2] Bazinet L, Lamarche F, Ippersiel D, et al. Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry[J]. Trends in Food Science & Technology, 1998, 9(3):107-113.
[3] Guido Saracco. Ionic membrane technologies for the recovery of valuable chemicals from waste waters[J]. Annali Di Chimica, 2003, 93(9-10):817-26.
[4] Tarvainen T, Svarfvar B, Kerman S, et al. Drug release from a porous ion-exchange membrane in vitro[J]. Biomaterials, 1999, 20(22):2177-83.
[5]  Daufin G, Escudier J P, H. Carrère, et al. Recent and Emerging Applications of Membrane Processes in the Food and Dairy Industry[J]. Food and Bioproducts Processing, 2001, 79(2):89-102.
[6] Zhao Z, Shi S, Cao H, et al. Electrochemical impedance spectroscopy and surface properties characterization of anion exchange membrane fouled by sodium dodecyl sulfate[J]. Journal of Membrane Science, 2017, 530:220-231.
[7] Ren H, Wang Q, Zhang X. Membrane fouling caused by amino acid and calcium during bipolar membrane electrodialysis[J]. Journal of Chemical Technology & Biotechnology, 2010, 83(11):1551-1557.
[8] Tanaka N, Nagase M, Higa M, et al. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances[J]. Desalination, 2012, 296:81–86.
[9] Park J, Chilcott T, Coster H, et al. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data[J]. Journal of Membrane Science, 2005, 246(2):137-144.
[10] Bukhovets A, Eliseeva T, Oren Y, et al. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution[J]. Journal of Membrane Science, 2010, 364(1-2):339-343.
[11] Lee H J, Hong M K, Han S D, et al. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants[J]. Desalination, 2009, 238(1):60-69.
[12] Hamidi, Alireza, Hosseini, et al. Surface modification of sulfonated polyvinylchloride cation-exchange membranes by using chitosan polymer containing Fe3O4 nanoparticles[J]. Journal of Solid State Electrochemistry, 2016, 20(2):371-77.
[13] Hosseini S M, Madaeni S S, Khodabakhshi A R, et al.. Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment[J]. Journal of Membrane Science, 2010, 365(1-2):438-446.
[14] Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition[J]. Journal of Membrane Science, 2013, 431:113-120.
[15] Mahendiravarman, Elangovan, Sangeetha, et al. Anti-biofouling anion exchange membrane using surface modified quaternized poly(ether imide) for microbial fuel cells[J]. Journal of Applied Polymer Science, 2017,134(5). 
[16] 葛道才. 耐有机污染阴离子交换膜的制备方法[J]. 水处理技术, 1978, (2):69-73. 
[17] Golubenko D, Yaroslavtsev A. Development of surface-sulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes[J]. Journal of Membrane Science, 2020, 612:118408.
[18] Zhao C, Xue J, Ran F, et al. Modification of polyethersulfone membranes – A review of methods[J]. Progress in Materials Science, 2013, 58(1):76-150.
[19] Liu M H, Chen Q, Wang L Z, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)[J]. Desalination, 2015, 367:11-20.
[20] Thu H A N, Dinh Do K, Thi Tran D, et al.  Surface modification of polyamide TFC membranes via redox‐initiated graft polymerization of acrylic acid[J]. Journal of Applied Polymer Science, 2017, 134(29):45110.
[21] 肖学文, 廖双泉, 廖建等. K2S2O8/Na2S2O3引发剑麻纤维接枝的研究[J]. 纤维素科学与技术, 2005, 13(2):50-53.
[22] 胡群辉, 周丰平, 彭博,等. 表面接枝改性聚酰胺复合反渗透膜及其性能研究[J]. 膜科学与技术, 2019, 39(1):22-27.
[23]  Kozak M, Domka L. Adsorption of the quaternary ammonium salts on montmorillonite[J]. Journal of Physics & Chemistry of Solids, 2004, 65(2-3):441-445.
[24] 金戈, 魏俊富, 王翱等. 聚丙烯中空纤维膜表面接枝苯乙烯磺酸钠的研究[J]. 现代化工, 2018, 38(2):98-101.
[25] Fan S K, Wang S L, Wang X B, et al. Photogated proton conductivity of ZIF-8 membranes co-modified with graphene quantum dots and polystyrene sulfonate[J]. Science China Materials, 2021, 1-11.
[26] Kochkodan V, Hilal N . A comprehensive review on surface modified polymer membranes for biofouling mitigation[J]. Desalination, 2015, 356:187-207.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号