支撑层强化聚偏氟乙烯复合膜的表面浸润性及油水分离性能研究
作者:秦佳旺,谢锐,巨晓洁,汪伟,刘壮,褚良银
单位: 四川大学 化学工程学院,成都 610065
关键词: 蒸气诱导相分离;聚偏氟乙烯;支撑层;油下超疏水;油水分离
出版年,卷(期):页码: 2021,41(5):26-34

摘要:
 在蒸气诱导相分离(VIPS)过程中,以无纺布(NWF)为支撑层调节聚偏氟乙烯(PVDF)膜下表面的微纳结构,成功制备了可高效分离油包水乳液的PVDF/NWF复合膜。系统研究了暴露时间对复合膜的微观结构与表面浸润性的调控规律,利用扫描电镜、接触角测量仪、衰减全反射红外光谱仪、水分滴定仪等表征了复合膜的微观结构、表面浸润性、化学组成和油水分离性能。结果表明,当暴露时间为1 min时,复合膜孔径为5.723 μm,下表面空气中水接触角为123.4º,油下水接触角为151.0º。其对搅拌时间不低于0.5 h或分散相含量不高于2%的正十六烷包水乳液的分离通量均高于17000 kg/(m2·h?MPa),最高分离效率可达99.9%。复合膜在三次连续油水分离循环后,其分离效率保持在92.0%以上,具有良好的稳定性。上述研究结果为高效油水分离膜的设计和制备提供了一种新思路。
 During the vapor-induced phase separation (VIPS) process, the non-woven fabrics (NWF) are introduced as substrates to construct micro/nano-structure on bottom surface of polyvinylidene fluoride (PVDF) membranes, and the PVDF/NWF composite membranes for efficient separation of water-in-oil emulsion are successfully prepared. The principle between the microstructure as well as surface wettability of composite membranes and exposure time in the water vapor atmosphere are systematically studied. The microstructure, surface wettability, chemical composition and oil-water separation performance of composite membranes are investigated by means of Scanning Electron Microscope, Contact Angle measuring instrument, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Moisture Titration Instrument, respectively. The results show that the composite membrane prepared by exposure time of 1 min have pore size of 5.723 μm, showing water contact angle in air and under oil water contact angle are 123.4º and 151.0º, respectively. The flux of composite membranes for water-in-hexadecane emulsion that stirring time not less than 0.5 h or water content not higher than 2% is higher than 17000 kg/(m2?h?MPa), and the highest efficiency reaches 99.9%. The separation efficiency of this membrane remains 92.0% or above after three successive separation cycles, exhibiting excellent stability. These results provide a new strategy for design and development of membrane for high efficient oil-water separation.
秦佳旺(1996-),男,辽宁抚顺人,硕士研究生,膜材料与膜过程,E-mail: jwqin@stu.scu.edu.cn

参考文献:
 [1]Chen R, Xu J D, Li S, et al. Multiscale-structured superhydrophobic/superoleophilic SiO2 composite poly(ether sulfone) membranes with high efficiency and flux for water-in-oil emulsions separation under harsh conditions[J]. New J Chem, 2020, 44(10): 3824-3827.
[2]魏巍. 油/水乳液分离膜的制备及其分离性能和膜污染关键问题研究[D]. 杭州: 浙江理工大学, 2018.
[3]Zhao J Q, Han H R, Wang Q Q, et al. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers[J]. React Funct Polym, 2019, 139: 92-101.
[4]Figoli A, Marino T, Simone S, et al. Towards non-toxic solvents for membrane preparation: a review[J]. Green Chem, 2014, 16(9): 4034-4059.
[5]Zhao Q, Xie R, Luo F, et al. Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation[J]. J Membr Sci, 2018, 549: 151-164.
[6]Deng Y, Zhang G, Bai R, et al. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation[J]. J Membr Sci, 2019, 569: 60-70.
[7]Yang X, He Y, Zeng G Y, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chem Eng J, 2017, 321: 245-256.
[8]李壹竹, 宋伟龙, 李之鹏, 等. 等离子体引发表面两性离子化制备抗污染性PVDF膜[J]. 膜科学与技术, 2018, 38(2): 29-36.
[9]Lin J, Lin F, Liu R, et al. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation[J]. Sep Purif Technol, 2020, 231: 115898.
[10]Xiang Y H, Liu F, Xue L X. Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation[J]. J Membr Sci, 2015, 476: 321-329.
[11]Shen X, Xie T, Wang J, et al. An anti-fouling poly(vinylidene fluoride) hybrid membrane blended with functionalized ZrO2 nanoparticles for efficient oil/water separation[J]. RSC Adv, 2017, 7(9): 5262-5271.
[12]Miao W Z, Jiao D C, Wang C Y, et al. Ethanol-induced one-step fabrication of superhydrophobic-superoleophilic poly(vinylidene fluoride) membrane for efficient oil/water emulsions separation[J]. J Water Process Eng, 2020, 34: 101121.
[13]Zhang W B, Zhu Y Z, Liu X, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angew Chem-Int Edit, 2014, 53(3): 856-860.
[14]Tao M M, Xue L X, Liu F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Adv Mater, 2014, 26(18): 2943-2948.
[15]赵倩. 蒸气诱导相分离法制备高机械强度的聚偏氟乙烯膜及其油水分离性能研究[D]. 成都: 四川大学, 2018.
[16]Su Y Y, Zhang M J, Wang W, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions[J]. Ind Eng Chem Res, 2019, 58(4): 1590-1600.
[17]Chu Z L, Feng Y J, Seeger S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew Chem-Int Edit, 2015, 54(8): 2328-2338.
[18]Tian X, Jokinen V, Li J, et al. Unusual dual superlyophobic surfaces in oil–water systems: The design principles[J]. Adv Mater, 2016, 28(48): 10652-10658.
[19]马新敏, 于伟东. PBT/PET复合纤维组分的红外光谱分析技术[J]. 纺织导报, 2005, 7: 51-58.
[20]陈鹏, 侯铮迟, 陆晓峰. 聚偏氟乙烯共辐射接枝N-乙烯基吡咯烷酮的红外光谱分析[J]. 辐射研究与辐射工艺学报, 2011, 29(3): 134-138.
[21]Wang Y, Liu Z, Luo F, et al. A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water[J]. J Membr Sci, 2019, 575: 28-37.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号