聚酰胺复合正渗透膜扩散过程分子动力学模拟
作者:聂雨奇,谢朝新,王 毅,姚之侃,黄政宇,郭 豪,肖舒宁
单位: 1. 中国人民解放军陆军勤务学院,重庆 401311; 2.国民核生化灾害防护国家重点实验室,北京 102205 3.浙江大学,化学工程与生物工程学院,杭州 310027
关键词: 正渗透膜;分子模拟;自由体积
出版年,卷(期):页码: 2021,41(5):60-64

摘要:
 水通量较低的问题限制了正渗透技术的大规模应用,通过在聚酰胺复合正渗透膜的支撑层和活性层引入纳米材料是正渗透膜水通量提升的重要方式。本文采用Materials Studio(MS)软件对H2O分子、Na+和Cl-等在正渗透膜活性层和支撑层内的扩散过程进行模拟,研究了纳米材料的添加对水分子和离子渗透的影响。结果表明,相较于支撑层,活性层具有较小的水分子和离子扩散系数和自由体积;活性层较低的自由体积结构是限制正渗透膜水通量的主要因素。在活性层中添加纳米材料可增加活性层聚合物的自由体积,相较于在支撑层中的添加,可更有效地提高正渗透膜的水通量。
 The low water permeability of polyamide composite forward osmosis membrane limits its larger-scale applications. The introduction of nano-materials in both active layer and support layer is an important way to mitigate this issue. In this work, the Materials Studio (MS) software was applied to simulate the diffusion process of water molecules and salt ions in polyamide composite forward osmosis membrane. The results indicated that the diffusion coefficients and free volume of the active layer were smaller than those of the polysulfone support layer. The structure of the active layer with lower free volume was the main factor limited the forward osmosis membrane water permeability. Therefore, the forward osmosis membrane water permeability can be improved by adding nano-materials into the active layer increasing the active layer molecules free volume.
谢朝新(1968-),男,博士,教授,主要从事环境工程教学科研工作。E-mail:a86909304@163.com

参考文献:
 [1] 李刚,李雪梅,王铎,等.正渗透膜技术及其应用[J].化工进展,2010,29(08):1388-1398. 
[2] 张梦轲.正渗透过程浓差极化量化分析及缓解对策研究[D].天津大学,2016
[3] Baoxia Mi,Menachem Elimelech. Chemical and physical aspects of organic fouling of forward osmosis membranes[J]. Journal of Membrane Science,2008,320(1).
[4] Hancock Nathan T,Cath Tzahi Y.Solute coupled diffusion in osmotically driven membrane processes.[J]. Environmental science & technology,2009,43(17).
[5] 刘清芝.反渗透膜及水溶液内扩散过程的分子模拟研究[D].中国海洋大学,2007. 
[6] 张少峰,张伟雪,杜亚威.硼酸、硼酸盐及其络合物在反渗透膜内扩散过程的分子模拟[J].化工进展,2019,38(07):3038-3045.
[7] M.Shen, S. Keten, R. M. Lueptow, Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations, Journal of Membrane Science, 506 (2016) 95-108.
[8] M. Ding, A. Ghoufi, A. Szymczyk. Molecular simulations of polyamide reverse osmosis membranes, Desalination, 343 (2014) 48-53.
[9] 孙娜,王铎,汪锰.正渗透膜材料及其制备方法的研究进展[J].材料导报,2019,33(17):2966-2975+2996.
[10] 王建琴. 聚砜膜的制备及其性能研究[D].浙江大学,2006.
[11] M.J. Kotelyanskii,N.J. Wagner,M.E.Paulaitis. Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30[J]. Journal of Membrane Science,1998,139(1). 
[12] J. Reinhold,T. Veltzke,B. Wells,et al.Molecular dynamics simulations on scattering of single Ar, N 2 , and CO 2 molecules on realistic surfaces[J]. Computers and Fluids,2014,97.
[13] Harder Edward,Walters D Eric,Bodnar Yaroslav D,et al.Molecular dynamics study of a polymeric reverse osmosis membrane.[J]. The journal of physical chemistry. B,2009,113(30).
[14] Rolf Lustig.Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient[J]. Molecular Simulation,2011,37(6).
[15] Albert Libchaber.From Biology to Physics and Back: The Problem of Brownian Movement[J]. Annual Review of Condensed Matter Physics,2019,10. 
[16] Lin Lin,Rene Lopez,Guy Z. Ramon,et al.Investigating the void structure of the polyamide active layers of thin-film composite membranes[J]. Journal of Membrane Science,2016,497.
[17] H.F.Ridgway, J. Orbell, S.Gray.Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: Recent developments and future prospects, Journal of Membrane Science, 524 (2017) 436-448.
[18] Vesselin Kolev,Viatcheslav Freger.Hydration, porosity and water dynamics in the polyamide layer of reverse osmosis membranes: A molecular dynamics study[J]. Polymer,2014,55(6).
[19] Weimin Gao,Fenghua She,Juan Zhang,et al.Dumée,Li He,Peter D. Hodgson,Lingxue Kong. Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane[J]. Journal of Membrane Science,2015,487.
[20] 朱娜娜,高会元.杂化聚酰亚胺膜对CO2/N2气体渗透性能的模拟[J].膜科学与技术,2016,36(06):47-52.
[21] Araki Takumi,Cruz-Silva Rodolfo,Tejima Syogo,et al.Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration.[J]. ACS applied materials & interfaces,2015,7(44).
[22] Zhao Zhang,Guodong Kang,Haijun Yu,et al.From reverse osmosis to nanofiltration: Precise control of the pore size and charge of polyamide membranes via interfacial polymerization[J]. Desalination,2019,466.
[23] Yi Wang,Zhendong Fang,Chaoxin Xie,et al.Dopamine Incorporated Forward Osmosis Membranes with High Structural Stability and Chlorine Resistance[J]. Processes,2018,6(9).
[24] Palach Kedchaikulrat,Ivo F.J. Vankelecom,Kajornsak Faungnawakij,et al.Effects of colloidal TiO 2 and additives on the interfacial polymerization of thin film nanocomposite membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,601.
[25] Limei Jin,Zhongying Wang,Sunxiang Zheng,et al.Polyamide-crosslinked graphene oxide membrane for forward osmosis[J]. Journal of Membrane Science,2018,545.
[26] Yi Wang,Xingya Li,Shuaifei Zhao ,et al.Thin-Film Composite Membrane with Interlayer Decorated Metal–Organic Framework UiO-66 toward Enhanced Forward Osmosis Performance[J]. Industrial & Engineering Chemistry Research,2018.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号