金属有机骨架ZIF-67膜的制备和表征
作者:尚鸿飞,鲁金明,刘 毅,杨建华,张 艳
单位: 大连理工大学化工学院,辽宁 大连 116024
关键词: ZIF-67膜;蒸汽相法;气体分离;理想选择性;
出版年,卷(期):页码: 2021,41(5):73-78

摘要:
 金属有机骨架材料ZIF-67具有良好的热稳定性和化学稳定性,在气体分离领域有潜在的应用价值。本研究在大孔载体上采用蒸汽相法制备ZIF-67膜,探究溶剂、晶化温度等因素对ZIF-67膜分离性能的影响,利用X射线衍射(XRD)与扫描电子显微镜(SEM)对ZIF-67膜的形貌结构进行表征。研究结果表明,以甲醇为溶剂、2-甲基咪唑为有机配体,在160℃条件下晶化9h成功制备了致密、纯相的ZIF-67膜。单组份气体渗透实验结果表明,在25℃、0.1MPa下,ZIF-67膜对H2的渗透速率为1.0×10-7 mol/(m2·s·Pa),H2/CO2、H2/N2和H2/CH4的理想选择性分别为7.62、11.0和10.9。
 Metal-organic framework ZIF-67 membrane shows great potential application in gas separation due to the good thermal stability and chemical resistant . In this paper, high performance ZIF-67 membrane was synthesized by the vapor phase method. The effects of solvent and crystallization temperature on the membrane growth were investigated. In addition, X-ray diffractometer, scanning electron microscope and other characterization methods were used to analyse the morphology and thickness of the ZIF-67 membrane. It is found that a dense and pure phase ZIF-67 membrane was obtained on the tubular macroporous alumina support using methanol as solvent at 160℃ for 9h. Single-component gas permeation experiment was carried out under the conditions of 25℃ and 0.1Mpa. The results showed that the flux of H2 was 1.0×10-7 mol/(m2·s·Pa)and the ideal selectivities of H2/CO2, H2/N2 and H2/CH4 were 7.62, 11.0 and 10.9, respectively.
尚鸿飞(1995—),男,山西忻州人,硕士研究生,研究方向为ZIFs材料的制备与应用, E–mail:shanghf262@163.com

参考文献:
 [1] Shah M, Mccarthy M C, Sachdeva S, et al. Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges[J]. Industrial & Engineering Chemistry Research, 2012, 51(5):2179-2199.
[2] 杨维慎,班宇杰. 金属-有机骨架分离膜[M].北京:科学出版社,2017.9
[3] Xiang L, Jia J, Hubberstey P, et al. Hydrogen storage in metal–organic frameworks[J]. CrystEngComm, 2007, 9(6):438-448.
[4] Venna S R, Carreon M A. Metal organic framework membranes for carbon dioxide separation[J]. Chemical Engineering Science, 2015, 124:3-19.
[5] Huang Y B, Liang J, Wang X S, et al. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions[J]. Chemical Society Reviews, 2016, 46(1).3
[6] Hao W, Lustig W P, Jing L. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks[J]. Chemical Society Reviews, 2018, 47.
[7] Y Zhang, Chang C H. Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning[J]. Processes, 2020, 8(3):377.
[8] Qiu S, Ming X, Zhu G. Metal-organic framework membranes: From synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16).
[9] 于汾, 朱腾阳, 王艳. 氟化改性ZIF-8-90杂化膜的制备及其渗透汽化脱醇研究[J]. 膜科学与技术, 2020, 040(001):23-30.
[10] Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O’Keeffe and Omar M. Yaghi. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Accounts of Chemical Research, 2010, 43(1):p.58-67.
[11] Huang A, Dou W, Caro J. Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization[J]. Journal of the American Chemical Society, 2010, 132(44):15562-15564.
[12] Sheng Z, Wei Y, Zhuang L, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. Journal of Materials Chemistry A, 2017, 5.
[13] Seoane B, Castellanos S, Dikhtiarenko A, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016.
[14] Kwon H T, Jeong H K, Lee A S, et al. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances[J]. Journal of the American Chemical Society. 2015:12304-11.
[15] Zhang C, Xiao Y, D Liu, et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chemical Communications, 2012, 49(6):600-602.
 [16] Nian P, Li Y, Zhang X, et al. ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H2 Separation[J]. ACS Appl Mater Interfaces, 2018, 10(4):4151-4160.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号