聚合物支撑的柔性有机二氧化硅杂化膜的制备与异丙醇脱水应用研究
作者:李亚楠1,廖明佳2,龚耿浩1
单位: 1天津工业大学 材料科学与工程学院,分离膜与膜过程国家重点实验室,天津 300387;2重庆化工职业学院,重庆401228
关键词: 聚砜支撑膜;桥联型有机二氧化硅,流延法;蒸汽渗透;异丙醇脱水
出版年,卷(期):页码: 2021,41(6):27-34

摘要:
 以1, 2-二(三乙氧基硅基)乙烷(BTESE)为硅源前驱体,通过溶胶-凝胶法在多孔聚合物基底上沉积桥联微孔有机二氧化硅活性分离层,制得高性能聚合物支撑的柔性有机二氧化硅“层杂化”膜。采用场发射扫描电子显微镜(SEM)、傅里叶变换衰减全反射红外光谱仪(ATR-FTIR)与X射线光电子能谱仪(XPS)等手段系统的考察了支撑体孔径大小以及有机二氧化硅溶胶浓度对有机二氧化硅层的形貌以及杂化硅微孔网络的影响。随后,该膜应用于异丙醇/水混合液(异丙醇:90 wt%)的蒸汽渗透脱水。研究发现,通过改变溶胶浓度和基膜孔径,可有效调控柔性有机二氧化硅“层杂化”膜的结构与成膜质量,最终获得具有高性能的柔性有机二氧化硅杂化膜。结果表明,随着BTESE溶胶浓度的增加,BTESE层厚度呈线性增加,溶胶浓度为5 wt%时,BTESE层厚约300 nm,分离因子最高可达1200,水通量约为1.77 kg/(m2 h)。此外,聚合物基膜的孔径尺寸也明显影响有机二氧化硅活性层在其上的沉积量并最终影响该膜的分离性能。
 Using 1,2-bis(triethoxysilyl)ethane(BTESE) as a single precursor, an organosilica layer with high perm-selectivity was successfully deposited onto a porous polymer substrate via scalable sol-gel flow-induced deposition method. The effect of pore sizes of supports and concentrations of BTESE sol for the morphology of BTESE layer and nanoscale hybrid organosilica networks were examined using SEM, ATR-FTIR and XPS. In addition, the layered hybrid membranes were applied to the vapor permeation dehydration of isopropanol–water (90/10 wt%) solutions at 105℃. We investigated the influence of pore sizes of supports and concentrations of BTESE sol for the formation of the organosilica layer that covered the porous polymeric supports. We found that the thickness of BTESE layer increased linearly with an increase in concentration of BTESE sols. The layered membrane demonstrated a water flux of 1.77 kg m−2h−1 and a separation factor of 1200 when using BTESE sol with concentration of 5 wt%, whose thickness was 500 nm. Also, different pore sizes of polymeric supports exerted on the formation of the BTESE layer along with the effect on membrane performance.
李亚楠(1995-),女,山东德州市人,硕士生,研究方向为柔性有机二氧化硅复合膜的制备及其应用,E-mail:naumlee@163.com

参考文献:
 [1] SAYG?N D, PATEL M K, TAM C, et al. Chemical and Petrochemical sector. Potential of best practice technology and other measures for improving energy efficiency[C]. IEA information paper, 2009.
[2] 徐玲芳, 相里粉娟, 陈祎玮, 等. 渗透汽化在生物燃料乙醇制备中的研究进展[J]. 化工进展, 26(6):788-796.
[3] 张春芳, 董亮亮, 白云翔, 等. ZIF-8填充聚硅氧烷膜的制备及渗透汽化分离水中正丁醇[J]. 膜科学与技术, 2013, 33(4):88-93.
[4] 褚良银, 陈文梅. 膜技术与可持续发展[J]. 膜科学与技术, 2003, 23(6):49-53.
[5] 周宗尧, 张朔, 王宁, 等. 有机溶剂分离膜技术研究进展[J]. 膜科学与技术, 2018, 38(1):104-113.
[6] KUJAWSKI W. Application of pervaporation and vapor permeation in environmental protection[J]. Polish Journal of Environmental Studies, 2000, 9(1):13-26.
[7] VANE L M. Pervaporation and vapor permeation tutorial: membrane processes for the selective separation of liquid and vapor mixtures[J]. Separation Science and Technology, 2013, 48(3):429-437.
[8] 侯影飞, 许杨, 李海平, 等. 渗透汽化膜改性技术研究进展[J]. 膜科学与技术, 2018, 38(1):136-142.
[9] URTIAGA A, CASADO C, ARAGOZA C, et al. Dehydration of industrial ketonic effluents by pervaporation. Comparative behavior of ceramic and polymeric membranes[J]. Separation science and technology, 2003, 38(14):3473-3491.
[10] CHAPMAN P D, OLIVEIRA T, LIVINGSTON A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. Journal of Membrane Science, 2008, 318(1-2):5-37.
[11] YONG W F, ZHANG H. Recent advances in polymer blend membranes for gas separation and pervaporation[J]. Progress in Materials Science, 2020:100713.
[12] LIU L, KENTISH S E. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature[J]. Journal of Membrane Science, 2018, 553:63-69.
[13] TENG M-Y, LEE K-R, FAN S-C, et al. Development of aromatic polyamide membranes for pervaporation and vapor permeation[J]. Journal of Membrane Science, 2000, 164(1-2):241-249.
[14] WANG Y-C, TENG M-Y, LEE K-R, et al. Comparison between the pervaporation and vapor permeation performances of polycarbonate membranes[J]. European polymer journal, 2005, 41(7):1667-1673.
[15] SOMMER S, MELIN T. Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(10):1138-1156.
[16] ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of membrane science, 1991, 62(2):165-185.
[17] ROBESON L M. The upper bound revisited[J]. Journal of membrane science, 2008, 320(1-2):390-400.
[18] RAZA W, YANG J, TSURU T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Separation and Purification Technology, 2021:118338.
[19] HASEGAWA Y, NAGASE T, KIYOZUMI Y, et al. Influence of acid on the permeation properties of NaA-type zeolite membranes[J]. Journal of Membrane Science, 2010, 349(1-2):189-194.
[20] REN X, TSURU T. Organosilica-Based Membranes in Gas and Liquid-Phase Separation[J]. Membranes (Basel), 2019, 9(9).
[21] CASTRICUM H L, SAH A, KREITER R, et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links[J]. Chem Commun (Camb), 2008, (9):1103-5.
[22] KREITER R, RIETKERK M D A, CASTRICUM H L, et al. Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening[J]. Journal of Sol-Gel Science and Technology, 2010, 57(3):245-252.
[23] CASTRICUM H L, PARADIS G G, MITTELMEIJER-HAZELEGER M C, et al. Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group[J]. Advanced Functional Materials, 2011, 21(12):2319-2329.
[24] 严浩军, 帅 张, 杜红斌, 等. 一种ZIF-8/有机硅杂化膜的制备及性能研究[J]. 膜科学与技术, 2019, 39(1):9-15.
[25] DONG G, NAGASAWA H, YU L, et al. Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling[J]. Journal of Membrane Science, 2020, 610:118284.
[26] NIIMI T, NAGASAWA H, KANEZASHI M, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J]. Journal of Membrane Science, 2014, 455:375-383.
[27] VAN VEEN H M, RIETKERK M D A, SHANAHAN D P, et al. Pushing membrane stability boundaries with HybSi® pervaporation membranes[J]. Journal of Membrane Science, 2011.
[28] TSURU T, SHIBATA T, WANG J, et al. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. Journal of Membrane Science, 2012, 421-422:25-31.
[29] XU R, WANG J, KANEZASHI M, et al. Development of robust organosilica membranes for reverse osmosis[J]. Langmuir, 2011, 27(23):13996-9.
[30] XU R, KANEZASHI M, YOSHIOKA T, et al. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification[J]. ACS Appl Mater Interfaces, 2013, 5(13):6147-54.
[31] 廖明佳, 朱韵, 任秀秀, 等. 微孔桥联有机硅杂化膜的制备方法及影响因素研究进展[J]. 膜科学与技术, 2021, 41(2):147.
[32] GONG G, WANG J, NAGASAWA H, et al. Synthesis and characterization of a layered-hybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane[J]. Journal of Membrane Science, 2014, 472:19-28.
[33] NGAMOU P H T, OVERBEEK J P, KREITER R, et al. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges[J]. Journal of Materials Chemistry A, 2013, 1(18).
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号