两性离子纳滤膜的制备及抗污染性能研究
作者:王新乐12,刘铭辉12,于海军3,康国栋3,曹义鸣3,李霞4,付晓燕5
单位: 1.中海油能源发展股份有限公司北京安全环保工程技术研究院,天津 300457;2.中海油节能环保服务有限公司,天津 300457;3.中国科学院大连化学物理研究所,大连 116023;4.中原工学院,郑州 450007;5.辽宁省大连生态环境监测中心,大连 116023
关键词: 纳滤膜;接枝改性;交联;抗污染
出版年,卷(期):页码: 2021,41(6):51-59

摘要:
 采用K2S2O8氧化聚砜膜产生活性羟基,通过接枝-交联法将N,N-二甲基N-(2-甲基丙烯酰胺乙基)N-(3-磺丙基)铵(MPDSAH)和丙烯酰胺(AAm)聚合交联到膜表面,制备两性离子复合纳滤膜。利用ATR/FTIR、XPS、SEM和接触角测定仪对膜进行表征,并考察接枝改性溶液中MPDSAH和AAm不同比例对膜渗透分离性能和抗污染性能的影响。结果表明,经过化学接枝交联,可在聚砜膜表面形成新的分离层,而且随着接枝单体MPDSAH浓度的增加,两性离子复合纳滤膜的表面亲水性和截留能力逐渐增强,但膜通量先增加后降低;两性离子复合纳滤膜对不同无机盐的截留顺序为Na2SO4 > MgSO4 > NaCl > MgCl2;聚砜膜表面的接枝改性层稳定性好,使用过程中不易脱落。
  Polysulfone membrane was oxidized by potassium persulfate to produce active hydroxyl groups. The zwitterionic nanofiltration membrane was prepared by grafting and crosslinking the MPDSAH and AAm to the membrane surface. The changes of the membrane surface before and after modification were characterized by ATR/FTIR, XPS, SEM and Contact angle measurement. The effects of different proportions of MPDSAH and AAM in grafted solution on the permeation separation performance and antifouling performance of the membrane were investigated. The results showed that a new separation layer could be formed on the surface of the polysulfone membrane through chemical grafting and crosslinking. The surface hydrophilicity and rejection rate of the zwitterionic nanofiltration membrane gradually increased with the concentration of grafted monomer MPDSAH, but the flux firstly increased then decreased. The rejection order of different inorganic salts by the zwitterionic nanofiltration membrane was Na2SO4 > MgSO4 > NaCl > MgCl2. The grafted layer on the surface of the polysulfone membrane was stable and not easy to fall off during use.
王新乐(1989-),男,山东聊城人,工程师,硕士,主要从事工业废水膜处理技术研究.

参考文献:
 [1] A.W. Mohammad, Y.H. Teow, W.L. Ang, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[2] Kaifeng Gu, Shuhao Wang, Yunhao Li, et al. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability[J]. Journal of Membrane Science, 2019, 581:214-223.
[3] N. Hilal, H. Al-Zoubi, N.A. Darwish, et al. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170:281-308.
[4] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, et al. Nanofiltration membranes and processes: A review of research trends over the past decade[J]. Journal of Water Process Engineering, 2017, 19:164-171.
[5] J.M. Gohil, P. Ray. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination[J]. Separation and Purification Technology, 2017, 181:159-182.
[6] H.B. Park, J. Kamcev, L.M. Robeson, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356:6343-6355.
[7] Renjie Li, Jinyan Li, Linhua Rao, et al.  Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation[J]. Journal of Membrane Science, 2021, 619: 118790-118798.
[8] S.Z. Pei, N. Widjojo, T.S. Chung, et al. Positively charged nano?ltration (NF)membranes via UV grafting on sulfonated polyphenylene sulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. Journal of Membrane Science, 2012, 417–418:52–60.
[9] Xiaolei Wang, Junfu Wei, Zhao Dai, et al. Preparation and characterization of negatively charged hollow fiber nanofiltration membrane by plasma-induced graft polymerization[J]. Desalination, 2012, 286(1):138-144. 
[10] Haijun Yu, Yiming Cao, Guodong Kang, et al. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization[J]. Journal of Membrane Science, 2009, 342:6-13.
[11] C. Y. Tang, Y. N. Kwon, J. O. Leckie. Probing the nano- and micro-scales of reverse osmosis membranes—A
comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements[J]. Journal of Membrane Science, 2007, 287: 146–156.
[12] Y. F. Mi, Q. Zhao, Y. L. Ji, et al. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance[J]. Journal of Membrane Science, 2015, 490:311-320.
[13] B.V. Bruggen, J. Schaep, D. Wilms, et al. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration[J]. Journal of Membrane Science, 1999, 156:29–41. 
[14] J. Garcia–Aleman, J.M. Dickson. Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions[J]. Journal of Membrane Science, 2004, 235:1–13. 
[15] J.H. Seo, R. Matsuno, T. Konno, et al. Surface tethering of phosphorylcholine groups onto poly (dimethylsiloxane) through swelling–deswelling methods with phospholipids moiety containing ABA–type block copolymers[J]. Biomaterials, 2008, 29:1367–1376.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号