铜污泥基中空纤维尖晶石膜的制备及油水分离性能研究
作者:赵志育,钟林新,王栋,董应超
单位: 工业生态与环境教育部重点实验室,大连理工大学 环境学院,大连 116000
关键词: 含铜污泥;废弃物资源化;含油废水;膜分离;陶瓷膜
出版年,卷(期):页码: 2022,42(2):1-7

摘要:
 含油废水排放引起的生态环境问题日益显著。因此,本文以实际含铜污泥与氧化铁(Fe2O3)混合,采用干/湿纺丝技术结合高温热转化法制备得到尖晶石CuFe2O4中空纤维膜,在实现含油废水高效处理的同时,也对含铜污泥进行高效回收。结果表明,在1000 °C条件下,铜离子稳定在尖晶石相中,制备的CuFe2O4膜具有高的水渗透性(320 L/(m2·h·bar)),超亲水-水下超疏油性质(水下油接触角为156°)。该膜对水包油(O/W)乳化液的的截留率达99.69%,水渗透率稳定在177 L/(m2·h·bar),表明了其优异的分离性能。将制备的CuFe2O4膜用于实际含油废水分离,渗透通量可达33 L/(m2·h·bar),油的截留率也可达到96.46%。这表明以尖晶石相稳定铜离子的机制,将含铜污泥转化为CuFe2O4膜,并最终应用于含油废水的分离,契合了“以废治废”的环保理念。
 The ecological and environmental problems caused by the discharge of oily wastewaters have increasingly attracted wide attentions. The CuFe2O4 hollow fiber membranes were prepared from actual heavy metal sludge and Fe2O3 via dry/wet spinning technology combined with high temperature thermal conversion methods. Also, the separation performance of CuFe2O4 for oil-in-water (O/W) emulsions was investigated. Result showed that the copper ions were stabilized by CuFe2O4 phase at certain sintering temperatures. The superhydrophilic and underwater superoleophobic CuFe2O4 spinel membranes were obtained with good permeability at 1000 °C. Stabilized permeability of 177 L/(m2·h·bar) were obtained with high oil rejection of 99.69%, demonstrating the excellent separation performance for O/W emulsion. In addition, the efficient separation of actual oily wastewater was also obtained via CuFe2O4 membranes. This copper ions-stabilized mechanism via the spinel phase that converted the copper-containing sludge into CuFe2O4 membrane was finally applied to the oily wastewater separation, achieving the environmental concept of "treating waste of waste".
赵志育(1995-05),男,河南,硕士,研究方向膜分离E-mail:zyzhao6@mail.dlut.edu.cn

参考文献:
 参考文献
[1] Ajmal M, Rao R a K, Khan M A. Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake)[J]. Journal of Hazardous Materials, 2005, 122(1-2):177-183.
[2] Bonen D, Sarkar S L. The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials[J]. Journal of Hazardous Materials, 1995, 40(3):321-335.
[3]易龙生, 赵立华, 许元洪, et al. 电镀污泥中铜的浸出和溶剂萃取回收研究[J]. 矿冶工程, 2019, 39(04): 115-118+122.
[4] 陈锋. 印制线路板行业水处理含铜污泥处置技术综述[J]. 污染防治技术, 2006, 019(004): 48-49,71.
[5] Tang Y, Chui S S-Y, Shih K, et al. Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors[J]. Environmental Science & Technology, 2011, 45(8): 3598-3604.
[6] Shih K, Tang Y. Incorporating simulated zinc ash by kaolinite- and sludge-based ceramics: phase transformation and product leachability[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 411-416.
[7] Liao C, Tang Y, Liu C, et al. Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability[J]. Journal of Hazardous Materials, 2016, 311(jul.5): 246-253.
[8] Tai Z S, Hubadillah S K, Othman M H D, et al. Influence of pre-treatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application[J]. Separation and Purification Technology, 2019, 222: 264-277.
[9] Zhu L, Dong X, Xu M, et al. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets[J]. Journal of Membrane Science, 2019, 582: 140-150.
[10] Liu S, Li K, Hughes R. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method[J]. Ceramics International, 2003, 29(8): 875-881.
[11] Wang B, Chen C, Liu H, et al. WO3/TiO2 superhydrophilic and underwater superoleophobic membrane for effective separation of oil-in-water emulsions[J]. Thin Solid Films, 2018, 665: 9-16.
[12] Xu M, Xu C, Rakesh K P, et al. Hydrophilic SiC hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux[J]. RSC Advances, 2020, 10(8): 4832-4839.
[13] 张小珍. 新型中空纤维陶瓷膜的制备科学研究与性能表征[D]. 中国科学技术大学, 2010.
[14] Li L, Dong X, Dong Y, et al. Thermal conversion of hazardous metal copper via the preparation of CuAl2O4 Spinel-based ceramic membrane for potential stabilization of simulated copper-rich waste[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2611-2618.
[15] Wei C C, Chen O Y, Liu Y, et al. Ceramic asymmetric hollow fibre membranes—One step fabrication process[J]. Journal of Membrane Science, 2008, 320(1-2): 191-197.
[16] Berbenni V, Marini A, Milanese C, et al. Solid state synthesis of CuFe2O4 from Cu(OH)2·CuCO3–4FeC2O4·2H2O mixtures: mechanism of reaction and thermal characterization of CuFe2O4[J]. Journal of Thermal Analysis & Calorimetry, 2010, 99(2): 437-422.
[17] Hu X, Yu Y, Zhou J, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane[J]. Journal of Membrane Science, 2015, 476: 200-204.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号