VIPS法制备PBI/PEI高吸液率锂离子电池隔膜
作者:鲁成明,王丽华,储健,虞鑫海
单位: 1.中国科学院化学研究所,绿色印刷院重点实验室,北京,100190) (2. 东华大学,应用化学系,上海, 201620
关键词: VIPS法, 聚苯并咪唑,聚醚酰亚胺,锂离子电池,隔膜
出版年,卷(期):页码: 2022,42(3):23-31

摘要:
 以聚苯并咪唑(PBI)和聚醚酰亚胺(PEI)为原料,通过蒸汽诱导相分离(VIPS)法制备高吸液率PBI/PEI(简称PBEI)锂离子电池隔膜。PBEI隔膜内部孔结构为三维网状结构,当PBI的含量达到40%时(PBEI-4),隔膜内部的孔结构最为疏松,孔隙率最大,并且由于醚键、酰胺键和咪唑极性基团的存在使PBEI隔膜的吸液率更高。PBEI-4隔膜具有优良的热稳定性,在160℃下基本不收缩。PBEI-4隔膜的离子电导率为1.943 mS cm-1,远高于商业聚丙烯(PP)膜和PEI隔膜。相同电流密度下,PBEI-4隔膜的放电容量高于PP及PEI隔膜;0.5C电流密度循环50次后,容量保持率为95.2%,表现出优异的循环稳定性。
 A kind of high electrolyte uptake PBI/ PEI (Short Name: PBEI) lithium ion battery separator was prepared by blending with polybenzimidazole(PBI) and polyetherimide (PEI) via vapor induced phase separation (VIPS) method. The internal microstructure of PBEI membrane presents a three-dimensional network structure. When the content rate of PBI reaches 40% (PBEI-4), the pore structure is the most loose and the porosity is the highest. Besides, due to the existence of ether bond, amide bond and imidazole polar groups, the electrolyte uptake of PBEI-4 separator is the highest, up to 391.84%. PBEI-4 membrane has good thermal stability and almost does not shrink at 160℃.The ionic conductivity of PBEI-4 membrane is 1.943 mS cm-1, much higher than that of PP (Polypropylene) membrane and PEI membrane. Under the same current density, the discharge capacity of PBEI-4 membrane is also higher than that of PP and PEI membrane. After 50 cycles of 5C current density, the capacity retention rate is 95.2%, which shows excellent cycle performance.
鲁成明(1996-),男,浙江绍兴人,硕士研究生,主要从事锂离子电池隔膜的制备

参考文献:
 1.Stern P C, Sovacool B K, Dietz T. Towards a science of climate and energy choices[J]. Nature Climate Change, 2016, 6: 547-555
2.Wong-Parodi G, Krishnamurti T, Davis A, et al. A decision science approach for integrating social science in climate and energy solutions[J].Nature Climate Change, 2016, 6: 563-569
3.Luo Z J, Fan D D, Liu X L, et al. High-performance silicon carbon composite anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2009, 189:16-21
4.肖伟,巩亚群,王红,等. 锂离子电池隔膜技术进展[J].储能科学与技术, 2016, 5:188-196
5.Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7:3857-3886
6.Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt[J]. Journal of the Electrochemical Society, 2003, 150: A695-A700
7.Zhang H P,  Zhang P, Li Z H, et al. A novel sandwiched membrane as polymer electrolyte for lithium-ion battery[J]. Electrochemistry Communications, 2007, 9:1700-1703
8.Li D, Shi D Q, Xia Y G, et al. A low-cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Acs Applied Materials & Interfaces. 2017, 9: 8742-8750
9.Liang, N P, Fang J H, Guo X X. A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5:15087-15095
10.Li D, Shi D Q, Xia Y G, Qiao L, Li X F, Zhang H M. Acs Applied Materials & Interfaces, 2017, 9:742-8750
11.Li D, Shi D Q, Yuan Z Z, et al. A low-cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Journal of Membrane Science, 2017,542:1-7
12.Sun G H, Guo J C, Niu H Q, Chen N J, Zhang M Y, Tian G F, Qi S L, Wu D Z, RSC Advances, 2019, 9:40084-40091
13.Sun G, Kong L, Liu B.  The design of a multifunctional separator regulating the lithium-ion flux for advanced lithium-ion batteries[J]. Journal of Membrane Science, 2019, 582:132-139
14.Sun G H, Liu B X, Niu H Q, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science, 2019, 595:20-24
15.Li D, Zhang H M, Li X F. Porous polyetherimide membranes with tunable morphology for lithium-ion battery[J].Journal of Membrane Science, 2018, 565:42-49 
16.Chae J, Park S, Kim D Y, et al. Reinforced PEI/PVdF Multicore-Shell Structure Composite Membranes by Phase Prediction on a Ternary Solution[J].  Polymers, 2018, 10(4):436
17.l'Abee R, DaRosa F, Armstrong M J, et al.. Journal of Power Sources, 2017, 345:202-211
18.Oh Y S, Jung G Y, Kim J H, et al. Janus-Faced, Dual-Conductive/Chemically Active Battery Separator Membranes[J]. Advanced Functional Materials, 2016, 26:7074-7083
19.Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium-ion batteries[J]. Electrochimica Acta, 2015, 154:219-226
20.Zhai Y Y, Xiao K, Yu J Y, et al. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:10551-10558
21.Cai H P, Tong X, Chen K, et al. Electrospun Polyethylene Terephthalate Nonwoven Reinforced Polypropylene Separator: Scalable Synthesis and Its Lithium-ion Battery Performance[J]. Polymers 2018, 10(6):574
22.Zhu C H, Nagaishi T, Shi J, et al. Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-Based Poly(Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces, 2017, 9:26400-26406
23.Li W B, Li X Z, Yuan A B, et al. Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries[J]. Ionics, 2016, 22:2143-2149
24.Qin S N, Wang Y Q, Wu X,et al. Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-By-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance[J]. Polymers, 2020, 12(7):1572
25.Cho H, Kim K, Park C M, et al. In situ fabrication of nanohybrid carbon/polyamide film providing robust binding and conductive network in silicon anode for lithium-ion battery[J]. Journal of Power Sources, 2019, 410:25-30
26.Chen J H, Liu Q Z, Wang B, et al. Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2017, 164: A1526-A1533
27.Li X, Chen S L, Xia Z L,et al. High performance of boehmite/polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery[J]. RSC Advances, 2020, 10:27492-27501
28. Gao Y, Sang X, Chen Y, et al. Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium-ion battery[J]. Journal of Materials Science, 2020, 55:3549-3560
29.Kuo P L, Wu C A, Lu C Y. High performance of transferring lithium-ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte[J]. Acs Appl Mater Interfaces, 2014, 6:3156-3162.
30.Kuo P L, Hsu C H, Chien L H. High Thermal and Electrochemical Stability of SiO2 Nanoparticle Hybird-Polyether Cross-Linked Membrane for Safety Reinforced Lithium-Ion Batteries[J]. RSC Advances, 2016, 6:18089-18095
31.He L Y, Qiu T, Xie C J, et al. A phase separation method toward PPTA–polypropylene nanocomposite separator for safe lithium-ion batteries[J].  Journal of Applied Polymer Science, 2017, 135(39):46697
32.Cai H P, Yang G P, Meng Z H, et al. Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al2O3-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries[J]. Polymers, 2019, 11(8):1362
33.Zuo P J, Lou S F, Pan Q R, et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators[J]. Chemical Engineering Journal, 2018(341):37-46
34.Liu Z H, Kong Q S, Zhang C J, et al.A flexible Cellulose/Methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium-ion battery[J].Acs Applied Materials & Interfaces, 2013, 5(1):128-134
35.Ajkidkarn P, Manuspiya H. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries[J].
International Journal of Biological Macromolecules, 2020, 164:3580-3588
36.Zhang J J, Liu Z H, Kong Q S, et al. Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator[J]. Acs Applied Materials & Interfaces, 2013, 5(1):128-134
37.Li D, Zhang H M, Li X F. Porous polyetherimide membranes with tunable morphology for lithium-ion battery[J]. Journal of Membrane Science, 2018, 565:42-49
38.Sun G H, Kong L S, Liu B X, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science, 2019, 582:132-139
39.Li J, Daniel C, Wood D. Materials Processing for Lithium-Ion Batteries[J]. Journal of Power Sources, 2011, 196(5):2452-2460
40.冯凯敏,王丽华,韩旭彤. 水蒸汽诱导相分离法制备聚苯并咪唑多孔膜,膜科学与技术,2018,38,51-60
41.Le Mong A, Kim D. Tailor-made pore-controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator[J]. Journal of Power Sources, 2016, 304:301-310
42.Liang J, Chen Q Y, Liao X B, et al. A Nano‐shield Design for Separators to Resist Dendrite Formation in Lithium‐Metal Batteries[J]. Angewandte Chemie International Edition, 2020, 59(16):6561-6566

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号