水溶性氮化碳改性PVDF复合膜的制备及 性能研究
作者:王慧雅
单位: 南京工程学院环境工程学院,江苏 南京 211167
关键词: 水溶性;氮化碳;PVDF;抗污染性;光催化性
分类号: X-1
出版年,卷(期):页码: 2022,42(3):41-50

摘要:
在本研究中,通过熔融盐法一步合成具有光催化性的水溶性石墨相氮化碳,并将其按一定比例分散至铸膜液基体制得K, Na-PHI/PVDF复合膜。采用XRD、FT-IR、SEM、孔隙率、接触角、水通量等测试手段对改性膜的性能进行表征测试。结果表明水溶性氮化碳粒子的引入提高了铸膜液的分相速率,改变膜的表面形态和化学性质,复合膜的纯水通量由49.76 L.m-2.h-1增至224.40 L.m-2.h-1,接触角降为53.90°,通量恢复率为83.73%,总污染率下降,可逆污染比例增加。复合膜对牛血清白蛋白和亚甲基蓝溶液的截留率分别为55.53%和89.88%,且具有一定的光催化性,可见光下270 min内可将10 mg.L-1 亚甲基蓝溶液降至0.56 mg.L-1,重复光催化降解率维持在74.50%左右。
In this study,the photocatalytic water-soluble graphite carbon nitride was synthesized by molten salt method in one step,and dispersed in a certain proportion to the casting solution to obtain K,Na-PHI/PVDF composite membrane.The characteristice of the modified membrane were determined using XRD、FT-IR、SEM、prosity 、water contact angle and water flux measurements.The results showed that the introduction of K, Na-PHI accelerated the phase separation rate of the casting solution and changed the pore structure and pore size of the composite membrane.The pure water flux of composite membrane increased from 49.76 L.m-2.h-1 to 224.4 L.m-2.h-2 ,the contact angle decreased to 53.9°,the flux recovery rate was 83.725%.the total pollution rate decreased,and the proportion of reversibel pollution increased.The separation of BSA and the degradation of MB on composite membrane were 55.53% and 89.88%.Respectively,the K,Na-PHI/PVDF membrane has excellent photocatalytic properties. The photocatalytic degradation of 10 mg.L-1 MB could be reduced to 0.56 mg.L-1 in 270 min and the repeat photocatalytic degradation rate was maintained at about 74.50%.

基金项目:
江苏省科技厅“含油污泥无害化深度处理关键技术集成装备研发及产业化”(BA2018004 )

作者简介:
王慧雅(1978-),女,江苏宜兴,副教授,研究生,硕士,研究方向PVDF膜改性及应用

参考文献:
[1] Jiazhi Chen, Xiaorong Meng, Yurui Tian, et al.Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance[J].Journal of Membrane Science, 2020, 616: 118587.
[2] Shruti Sakarkar, Shobha Muthukumaran and Veeriah Jegatheesan.Tailoring the Effects of Titanium Dioxide (TiO2) and Polyvinyl Alcohol (PVA) in the Separation and Antifouling Performance of Thin-Film Composite Polyvinylidene Fluoride (PVDF) Membrane[J].Membranes, 2021, 11: 241.
[3] Leong, S., Razmjou, A., Wang, K., et al.TiO2 based photocatalytic membranes: A review[J].Journal of Membrane Science, 2014, 472: 167-187.
[4] NuritShaham-Waldmann, YaronPaz.Away from TiO2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water[J]. Materials Science in Semiconductor Processing, 2016, 42: 72–80.
[5] Ciara Byrneab, Gokulakrishnan Subramanianc, Suresh C.Pillai.Recent advances in photocatalysis for environmental applications[J].Journal of Environmental Chemical Engineering, 2018, 6: 3531–3555.
[6] CB Hiragond, A Kshirsagar, D Khanna, et al.Electro-photocatalytic degradation of methylene blue dye using various nanoparticles: A demonstration for undergraduates[J].Journal of Nanoparticle Research,2018, 7: 254–257.
[7] K. Fan, J. Su, Z. Zeng, J. Hu, H. Yang, Z. Hou.Anti-fouling and protein separation of PVDF-g-PMAA@MnO2 filtration membrane with in-situ grown MnO2 nanorods[J].Chemosphere, 2022, 286: 131756.
[8] Liu F.Abed M.M., Li K.Preparation and characterization of poly(vinylidene fluoride)(PVDF) based ultrafiltration membranes using nano γ-Al2O3[J].Journal of Membrane Science,2011, 366: 97-103.
[9] Wei Y., Chu H.Q., Dong B.Z., et al.Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance[J].Desalination, 2011, 272: 90-97.
[10] Yu L.Y, Xu Z.L., Shen H.M.,et al.Preparation and characterization of PVDF-SiO2 composit hollow fiber UF membrane by sol-gel method[J].Journal of Membrane Science, 2009, 337: 257-265.
[11] Huang Z.Q., Zheng F., Zhang Z., et al.The performance  of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrae formation[J].Desalin- 
ation, 2012, 292: 64-72.
[12] Hong J., He Y.Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning[J].Desalination, 2014, 332: 67-75.
[13] Dhand V., Hong S.K., Li L., et al.Fabrication of robust,ultrathin and light weight,hydrophilic PVDF-CNT membrane composite for salt rejection[J].Composites Part B:Engineering, 2019, 160: 632-643.
[14] Beygmohammdi F., Nourizadeh Kazerouni H., Jafarzadeh Y., et al.Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system[J].Chemical Engineering Research and Design, 2020, 154: 232-240.
 
[15] B.D. Mccloskey, H.B. Park, J. Hao, B.W. Rowe, D.J. Miller, B.D. Freeman. A bioinspired fouling-resistant surface modification for water purification membranes[J]. Journal of Membrane Science, 2012, 413: 82-90.
[16] N. Li, Y. Tian, J. Zhang, Z. Sun, J. Zhao, J. Zhang, W. Zuo, Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation[J]. Journal of Membrane Science, 2017, 528: 359-368.
[17] 郭慧, 鲍建国, 冯群, 等. Ag3PO4/TiO2-PVDF膜制备及抗污染性研究[J].环境科学与技术, 2018, 41(1): 16-21.
[18] 何蕾,鲍建国,冷一非,等.新型光催化材料制备及其PVDF膜自清洁改性[J].环境科学与技术, 2018, 10:26-33.
[19] 夏振国, 朱颖颖, 陈耿, 等.用于环境净化的TiO2/AC复合材料的制备及其改性研究进展[J].化工进展,2021, 40: 3837-3846.
[20] 陈宇昊, 刘家辉, 刘娟,等.新型复合纳滤膜研究进展[J].化工进展, 2021, 4: 2665-2675.
[21] 姜钦亮,王一雯,付尹宣,等.O-MoS2改性PMIA疏松纳滤膜的制备及其性能[J].膜科学与技术,2021, 41(3): 126-134.
[22] 赵蕾,朱孟府,郝丽梅,等.多功能GO/g-C3N4/Ag复合膜的制备及性能研究[J].膜科学与技术, 2020, 40(1): 64-71.
[23]王海涛, 张皓冰, 奥德, 等. Cu(tpa)/PVDF杂化超滤膜的制备及性能研究[J].膜科学与技术, 2021, 41(1): 40-49.
[24] Huiya Wang,keqiang Ding, Danping Shao, etc.One step synthesis of water-soluble graphitic carbon nitride nanosheets with enhanced visible-light photocatalytic activity[J].Desalination and Water Treatment, 2021, 232: 114-120.
[25] 王慧雅. TiO2/GO/PVDF改性复合膜的制备及抗污染性能研究[J]. 膜科学与技术, 2021, 41(1): 80-88.
[26] Igor Krivtsov, Dariusz Mitoraj, Christiane Adler, et. al. Water-soluble polymeric carbon nitride colloidal nanoparticles for highly selective quasi-homogeneous photocatalysis[J].Angewandte Chemie-international Edition, 2020, 559: 487-495.
[27] 赵传起,杨悦锁,徐晓晨,等.纳米氧化石墨烯改性PVDF微滤膜在MBR中的抗污染性能[J].化工学报, 2017, 68: 375-383.
[28] Huiya Wang, Keqiang Ding, Qiang Zhou.Preparation and anti-fouling performance of polyvinylidene fluoride composite membranes modified with different contents of TiO2/GO[J]. Desalination and Water Treatment,
2021, 224: 95-105.
[29] Anastassiya A. Mashentseva, Murat Barsbay, Nurgulim A. Aimanova, et al. Application of silver-loaded composite track-etched membranes for photocatalytic decomposition of Methylene Blue under visible light[J]. Membranes, 2021, 11: 60.
[30] Dongdong Kang, Huiju Shao, Guijing Chen, et. al. Fabrication of highly permeable PVDF loose nanofliltration composite membranes for the effective separation of dye/salt mixtures[J].Journal of Membrane Science, 2021, 621: 118951.
[31] 唐元晖, 李沐霏, 林亚凯, 等.相转化法制膜过程的模型与模拟研究进展[J].膜科学与技术, 2020, 40(1): 266-274.
[32] H.Manzanarez, J.P.Mericq, P.Guenoun, et al. Modeling the interplay between solvent evaporation and phase separation dynamics during membrane[J].Journal of Membrane Science, 2021, 620: 118941.
[33] 李鑫, 方小峰, 李健生, 等.纳米Ag粒子原位杂化PVDF超滤膜的抗污染性能[J].环境科学报, 2014, 34: 638-644.
[34] 庞睿智, 李鑫, 李健生,等. ZrO2纳米粒子原位杂化PVDF膜的制备及其抗污染性能[J].物理化学学报, 2013, 29: 2592-2598.
[35] 李冬梅, 江鹏, 叶挺进, 等. GO-TiO2改性中空纤维膜的制备条件及抗污染性能研究[J].环境科学学报, 2017, 37: 3745-3754.
[36] 苗小郁, 李建生, 王连军, 等. 聚偏氟乙烯膜的亲水化改性研究进展[J]. 材料导报, 2006, 20(3): 56-59
[37] 李建国, 李剑锋, 任静, 等 . 超疏水疏油改性PVDF膜用于膜蒸馏深度处理焦化废水[J]. 水处理技术,2018,44(3):58-68
[38] 李健生, 王连军, 梁祎, 等 .纳米氧化物粒子对PVDF中空纤维膜结构与性能的影响[J]. 环境科学,2005,26(3):126-129
[39]唐广军, 孙本惠. 聚偏氟乙烯膜的亲水性改性研究进展[J]. 化工进展,2004,23(5):480-485
[40] 孟晓荣, 张海珍, 王磊, 等. 城市污水二级出水超滤膜污染与膜特性的研究[J]. 环境科学,2013,34(5):1822-1827
[41] 张志伟, 徐斌, 张毅敏, 等. GO-TiO2改性 PVDF复合膜去除微污染水体中氨氮[J].中国环境科学, 2019, 39: 2395-2401. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号