藻菌体系胞外聚合物对超滤膜污染的影响机制研究
作者:丁梓尧,方凡,辛佳期,孙晨,马禾苗,黄澳,张哲,李昆
单位: 南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 330031
关键词: 藻菌共生;畜禽养殖废水;胞外聚合物;膜污染
出版年,卷(期):页码: 2022,42(3):51-59

摘要:
藻菌共生体-膜耦合工艺在畜禽养殖废水处理中的膜污染问题是限制其应用的关键瓶颈之一。本研究通过对比微藻、活性污泥、微藻-活性污泥(藻菌)体系中微生物分泌的胞外聚合物(EPS)组分和含量,并将EPS拆分成溶解性微生物产物(SMP)、松散结合型胞外聚合物(LB-EPS)、紧密结合型胞外聚合物(TB-EPS)和微生物絮体(MFR)四个部分,考察各组分对膜污染形成的影响和贡献。模型拟合结果发现,微藻组中EPS组分与完全堵塞、标准模型和中间堵塞拟合度高,而活性污泥和微藻-活性污泥体系EPS组分则与标准堵塞、中间堵塞和滤饼层模型拟合度高。在各EPS组分中,SMP对膜污染贡献最大。对膜污染物成分分析发现,蛋白质和多糖类物质是造成膜污染的主要有机物成分,其中疏水性蛋白质占比最大。此外,微藻-活性污泥体系中藻菌共生作用减少了TB-EPS类物质中色氨酸、腐殖质和多糖类物质的产量,有利于膜污染的缓解。
 Membrane fouling of microalgae-bacteria symbiont and membrane coupling process has been one of the key bottlenecks restricting its application. In this study, microalgae, activated sludge and microalgae-bacteria symbiont were compared in terms of the EPS compositions and concentrations. The EPS compositions were further split into four parts including soluble microbial product (SMP), loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS) and microbial floc residue (MFR) to study the influence and contribution of each component to the formation of membrane fouling. The model fitting results showed that EPS components from microalgae group were highly fitted with complete blockage, standard blockage and intermediate blockage models, while those from activated sludge group and microalgae-activated sludge group were highly fitted with standard blockage, intermediate blockage and cake filtration models. SMP showed the biggest impact on membrane fouling conditions among all EPS compositions. Proteins and polysaccharides are the main organic components causing membrane fouling, and hydrophobic proteins accounted for the largest proportion. In addition, the symbiosis of microalgae and bacteria in microalgae-activated sludge group reduced the production of tryptophan, humus, and polysaccharides in TB-EPS substances, which would be positive for the mitigation of membrane fouling.
丁梓尧(1997-),男,硕士生,主要从事废水资源化的膜污染研究。

参考文献:
 [1]Kim Hyun-Chul,Choi Wook Jin,Chae A Na, et al. Evaluating integrated strategies for robust treatment of high saline piggery wastewater.[J]. Water research,2016,89:222-231.
[2]梁恒,唐小斌,柳斌,等.超滤组合工艺处理含藻水膜污染机制及调控研究[J].给水排水,2020,56(07):54-60.
[3]Ding Yanyan,Ma Baiwen,Liu Huijuan, et al. Effects of protein properties on ultrafiltration membrane fouling performance in water treatment.[J]. Journal of environmental sciences (China),2019,77:273-281.
[4]Deng Lijuan,Guo Wenshan,Ngo Huu Hao, et al. Biofouling and control approaches in membrane bioreactors.[J].Bioresource technology,2016,221:656-665.
[5]Weigang Wang,Yuan Yan,Yuhao Zhao, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia[J]. Water Research,2020,169: 115223.
[6]Li Sun,Yu Tian,Jun Zhang, et al. A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: Performance and mechanism[J]. Chemical Engineering Journal,2018,344:246-253.
[7]Jiajian Xing,Hexuan Wang,Xiaoxiang Cheng, et al. Application of low-dosage UV/chlorine pre-oxidation for mitigating ultrafiltration (UF) membrane fouling in natural surface water treatment[J]. Chemical Engineering Journal,2018,344:62-70.
[8]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007(06):1-4+17.
[9]HERMIA J. Constant pressure blocking filtration law application to powder-law non-newtonian fluid[J]. Transinstchemeng, 1982, 60(3): 183-187.
[10]Weiwei Huang,Huaqiang Chu,Bingzhi Dong, et al. Evaluation of different algogenic organic matters on the fouling of microfiltration membranes[J]. Desalination,2014,344:329-338.
[11]Jinling Wu,Yuan Zhuang,Haitao Li, et al. pH Adjusting to Reduce Fouling Propensity of Activated Sludge Mixed Liquor in Membrane Bioreactors[J]. Separation Science and Technology,2010,45(7):890-895.
[12]Fangang Meng, Shaoqing Zhang, Yoontaek Oh, et al.Fouling in membrane bioreactors: An updated review[J].Water Research,2017,114:151-180.
[13]Siqi Shen,Shengke Yang,Qianli Jiang, et al. Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory[J]. Environmental Science and Pollution Research,2020,27(2):1697-1709.
[14]Maryna Peter-Varbanets,Jonas Margot,Jacqueline Traber, et al. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration[J].Journal of Membrane Science,2011,377(1):42-53.
[15]Wang Yaying,Wang Jiaqin,Liu Zhiping, et al. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory[J]. Science of the Total Environment,2021,795:148682
[16]陈卫,袁哲,陶辉,等.SUVA值与超滤膜污染的关系[J].华中科技大学学报(自然科学版),2011,39(02):129-132.
[17]Tahir Maqbool,Quang Viet Ly,Muhammad Bilal Asif, et al. Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review[J]. Science of the Total Environment,2020,718: 137291.
[18]刘丽贞,黄琪,吴永明,等.鄱阳湖CDOM三维荧光光谱的平行因子分析[J].中国环境科学,2018,38(01):293-302.
[19]Kun Li,Jianxing Wang,Jibao Liu, et al. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis[J]. Journal of Environmental Sciences,2016,43:106-117.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号