基于Passerini反应改性PVDF超滤膜及其抗蛋白质污染性能
作者:武家鑫,付维贵,刘建超,薛莹莹,陈熙,冯霞,赵义平,陈莉
单位: 天津工业大学 材料科学与工程学院,分离膜与膜过程国家重点实验室,天津 300387
关键词: 表面改性;Passerini反应;PVDF超滤膜;抗污染;分离性能
出版年,卷(期):页码: 2022,42(3):68-77

摘要:
本文以丙烯酸(AA)、乙醛(HA)和异腈基乙酸甲酯(MIA)为改性单体,基于Passerini反应对疏水性聚偏氟乙烯(PVDF)超滤膜进行表面接枝改性,以期提高膜的亲水性和抗污染性能;通过红外光谱、X-射线光电子能谱、场发射电子显微镜和原子力显微镜观察膜表面化学组成和形貌;通过膜表面水接触角、Zeta电位测试表征其亲水性和表面电荷,并测试膜的纯水渗透性能和抗蛋白质污染性能。结果表明,与原膜(M0)相比,经过Passerini反应进行24 h后,改性膜(M24)的接触角由M0的100.4°降低至58.9°;M24显弱负电性;牛血清蛋白(BSA)溶液动态循环过滤实验表明改性膜的截留率从85.5%增加到95.5%,通量恢复率从原膜的62.0%增加到为93.5%,不可逆污染指数从38.0%降低到6.5%。说明经过Passerini反应修饰后,膜的亲水性和抗污染性得到显著的提升。
 Acrylic acid (AA), acetaldehyde (HA) and methyl isocyanoacetate (MIA) were used as modified monomers and grafted onto the surface of PVDF ultrafiltration membrane based on Passerini reaction. The chemical composition and morphology of the membrane surface were observed by infrared spectroscopy, X-ray photoelectron spectroscopy, field emission electron microscope and atomic force microscope. The water contact angle and Zeta potential of the membrane surface were observed to characterize the hydrophilicity and surface charge, respectively. The pure water permeability and anti-pollution performance of the membranes were also tested. The results showed that the contact angle of M24 modified membrane after Passerini reaction for 24 h decreased compared with pure PVDF membrane (M0) from 103° to 58°, and the M24 was weakly negative charged. Moreover, the dynamic circulation filtration results indicated that the flux recovery rate increased from 62.0% to 93.5%, and the rejection rate increased from 85.5% to 95.5%. The irreversible pollution index has been reduced from 38.0% to 6.5%. Therefore, the modified membrane based on Passerini reaction possess high water hydrophilicity and protein resistance.
武家鑫(1995-),男,内蒙古呼和浩特人,硕士研究生,主要研究方向超滤膜的制备及其性能研究

参考文献:
 [1] Maryam A T, Toraj M, Mohammad H S. High‐flux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties[J]. J Appl Polym Sci, 2021, 138(4).
[2] Jonathan S, Amanda.V E. Cross-linking of dehydrofluorinated PVDF membranes with thiol modified polyhedral oligomeric silsesquioxane (POSS) and pure water flux analysis[J]. J Membr Sci, 581 (2019) 362–372.
[3] Zheng Z S, Li B B, Duan S Y, et al. Preparation of PVDF ultrafiltration membranes using PVA as pore surface hydrophilic modification agent with improved antifouling performance[J]. Polymer Engineering & Science, 2019, 59(S1): 384-393.
[4] Jiang J H, Zhu L P,Zhang H, et al. Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives[J]. J Membr Sci, 2014, 457: 73-81.
[5] Sun J, Wu L, Hu F. Preparation and characterization of a PVDO/EG-POSS hybrid ultrafiltration membrane for antifouling improvement[J]. RSC Adv. 2015, 5(51): 40753-40763.
[6] Zhang Z, Chen S E, Chang Y, et al. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J]. J Phys Chem B, 2006, 110:10799-10804.
[7] Chen F T, Shi X X, Chen X B, et al. An iron(Ⅱ) phthalocyanine/poly (vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation[J]. J Membr Sci, 2018, 552: 295-304.
[8] He Y, Xu L H, Feng X, et al. Dopamine-induced nonionic polymer coatings for significantly enhancing separation and antifouling properties of polymer membranes: Codeposition versus sequential deposition[J]. J Membr Sci, 2017, 539: 421-431.
[9] Minko S. Grafting on solid surfaces: “grafting to” and “grafting from”methods[J]. Surf Interfaces, 2008, 66: 215-234. 
[10] Chang Y, Ko C Y, Shih Y J, et al. Surface grafting control of PEGylated poly (vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization[J]. J Membr Sci, 2009, 345(1-2): 160-169.
[11] Paserini, M. Simone, L. Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 1921, 51:126–129.
[12] Domling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions[J]. Chem Rev, 2012, 112(6): 3083-3135. 
[13] Fu W G*, Pei T F, Mao Y Y, et al. Highly hydrophilic poly (vinylidene fluoride) ultrafiltration membranes modified by poly (N-acryloyl glycinamide) hydrogel based on multi-hydrogen bond self-assembly for reducing protein fouling, J Membr Sci, 572(2019): 453-463.
[14] Li X H, Liu L F, Liu T, et al. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode[J]. J Membr Sci, 2020, 605
[15] Zhu J Y, Zhou S Y, Li M S, et al. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4 –palygorskite nanocomposites to enhance strength and antifouling properties[J]. J Membr Sci, 2020, 612: 118467.
[16] 付维贵, 李国霞, 翟高伟, 武家鑫, 刘怀相, 孙宝山, 陈熙. 凝胶微球改性PVDF超滤膜的制备及其耐油污染性能[J]. 天津工业大学学报, 2020, 39(05): 22-29.
[17] Ludger A W, Ricardo A W, Neves F, et al. Multiple multicomponent reactions with isocyanides[J]. Isocyanide Chemistry, 2012, 8: 233-262.
[18] Zhou Q, Lei X P, Li J H, et al. Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization[J]. Desalination, 2014, 337: 6-15. 
[19] 王慧雅. TiO2/GO/PVDF改性复合膜的制备及抗污染性能研究[J]. 膜科学与技术, 2021, 41(01): 80-88.
[20] Tang C Y, Fu Q S, Criddle C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater[J]. Environ Sci Technol, 2007, 41: 2008-2014. 
[21] 韩洪蕊, 赵军强, 杨景, 王齐齐, 李冬阳, 赵义平, 陈莉. PVDF/PAA-b-PMMA-b-PAA超滤膜的结构调控和性能评价[J]. 膜科学与技术, 2019, 39(02): 1-9.
[22] Wu C R, Wang Z Y, Liu S H, et al. Simultaneous permeability, selectivity and antibacterial property improvement of PVC ultrafiltration membranes via in-situ quaternization[J]. J Membr Sci, 2018, 548: 50-58.
[23] Duong P H.H, Nunes S P, Chung T S. Dual-skinned polyamide/poly (vinylidene fluoride)/cellulose acetate membranes with embedded woven[J]. J Membr Sci, 2016, 520: 840-849.
[24] Liang S, Kang Y, Tiraferri A, et al. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles[J]. ACS Appl Mater Interf, 2013, 5(14): 6694-703.
[25] Qin A, Li X, Zhao X, et al. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface[J]. ACS Appl Mater Interf, 2015, 7(16): 8427-8436.
[26] Zheng Z S, Li B B, Duan S Y, et al. Preparation of PVDF ultrafiltration membranes using PVA as pore surface hydrophilic modification agent with improved antifouling performance[J]. Polym Eng Sci 2019, 59(S1): 384-393.
[27] Zhang Y, Zhao J, Chu H, et al. Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane[J]. Desalination, 2014, 344: 71-78.
[28] Shen L, Wang H, Zhang Y, et al. New strategy of grafting hydroxyethyl acrylate (HEA) via γ ray radiation to modify polyvinylidene fluoride (PVDF) membrane: thermodynamic mechanisms of the improved antifouling performance[J]. Sep Purif Technol, 2018, 207: 83-91.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号