交联型聚砜阴离子交换膜的制备及其性能研究
作者:乔宗文 冯波 赵本波
单位: 1陕西国防工业职业技术学院化工学院, 陕西省西安市 710300; 2中北大学化学工程学院, 山西省太原市 030051
关键词: 聚砜;季铵化;交联结构;尺寸稳定性;耐碱性
分类号: O631
出版年,卷(期):页码: 2022,42(3):78-83

摘要:
以聚砜、氯乙基异氰酸酯和4-二乙基氨基苯酚为试剂,通过两步一锅法制备一种具有较长柔性侧链的季铵化聚砜PSF-QN膜材,接着与1,4-二溴丁烷发生交联反应构筑一种交联型聚砜阴离子交换膜CPSF-BN,通过红外光谱表征了改性聚合物的化学结构,研究了阴离子交换膜的吸水率、尺寸稳定性和耐碱性等性能。研究显示,由于亲疏水区域距离较远,强化了相分离结构,同时形成一种交联网状结构,解决了阴离子交换膜在高吸水率下尺寸稳定性和耐碱性差的难题,随着温度的升高,CPSF-BN膜的吸水率(WU),吸水溶胀率(SW),离子传达率增加,其中离子交换容量(IEC)为1.53 mmol/g的CPSF-BN-3膜在25℃和85℃的氢氧根传导率为0.035 S/cm和0.083 S/cm,相应的吸水溶胀性仅为14.1%和25.8%,在强碱中浸泡30天的传导率保留量达到了83.2%,保持很好的尺寸稳定性和耐碱性,有望用于燃料电池的实际应用。
With polysulfone(PSF), ethyl chloride isocyanate and 4 - diethyl amino phenol reagent, a kind of quaternary ammonium of polysulfone (PSF-QN) membrane material with a long flexible side chain was prepared based on one pot methods by two step. And then a kind of crosslinking type polysulfone anion exchange membrane (CPSF-BN) was constructed by crosslinking reaction with 1, 4 – dibromobutane as small molecule reagent. After characterizing the chemical structure of the modified polymer by infrared spectral. Water uptaking(WU), dimensional stability(SW) and alkali resistance of anion exchange membrane were studied. The experiment result was found that the phase separation structure was strengthen by locating the hydrophilic region far away from hydrophobic regions. At the same time, a network structure is formed by chemical crosslinking. The combination of these two factors solves the problem of poor dimensional stability and alkali resistance of anion exchange membrane under high water absorption. With the increase of temperature, the water absorption rate (WU), water absorption swelling rate (SW) and ion conductivity of CPSF-BN AEM increase. The ion conductivity of CPS-HN-3 AEM with IEC 1.53mmo/g at room temperature and 85℃ are 0.035 S/cm and 0.083S/cm. The swelling ratio are only 14.1% and 25.8%. The AEM maintained good dimensional stability and alkali resistance due to the retention of conductivity reached 83.2% after soaking in strong alkali for 30 days. It is expected to be used in practical applications of fuel cells.

基金项目:
陕西省自然科学基金项目(2019JQ-927),陕西省教育厅自然科学专项(18JK0069和陕西国防学院科研项目(Gfy21-01)

作者简介:
乔宗文(1987-),男,江苏连云港人,博士研究生,讲师,研究方向:功能高分子的合成及性能研究

参考文献:
 [1] Rossi R, Wang X, Logan B E. High performance flow through microbial fuel cells with anion exchange membrane[J]. Journal of Power Sources, 2020, 475: 228633.
[2] 宁丹, 胡朝霞, 陈荣, 等. 序列式含芴季铵化聚芳醚砜阴离子交换膜的制备及交联改性[J]. 高分子学报, 2017(05): 842-850.
[3] Kumar M A, Eun S Y,Boram J,et al. Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance[J]. International Journal of Hydrogen Energy, 2020, 45(51):27346-27358
[4] 李紫芹. 提高阴离子传导性的膜材料的结构设计与性能研究[D].中国科学技术大学, 2021.
[5] 汪丽梅,窦立岩,辛鹏.交联型季铵聚芳醚砜阴离子交换膜的制备[J].高等学校化学学报, 2016, 37(07): 1408-1414.
[6] Yang  Q,  Li  L,  Lin  C  X,  et  al.  Hyperbranched  poly(arylene  ether  ketone)  anion  exchange membranes for fuel cells[J]. Journal of Membrane Science, 2018, 560: 77~86. 
[7] Li  S,  Zhang  H  B,  Wang  K  Q,  et  al.  Micro-block  versus  random  quaternized  poly(arylene ether  sulfones)  with  highly  dense  quaternization  units  for  anion  exchange  membranes[J].  Polymer Chemistry, 2020, 11(13): 2399~2407. 
[8] Zhu Y, Chen  C  R,  Zuo  D  Y,  et  al.  Hybrid  anion-exchange  membranes  derived  from quaternized polysulfone and functionalized titanium dioxide[J]. Electrochim. Acta, 2015, 17 : 128~136.  
[9] Zhang X, Li ZW, Chen XL, et al. Side Chain Engineering of Sulfonated Poly(arylene ether)s for Proton Exchange Membranes. Chinese Journal of Polymer Science. 2020, 38: 185-193. 
[10] Yang  WH,  Xu  P,  Li  XZ,  et  al.  Mechanically  robust  semi-interpenetrating  polymer network  via  thiol-ene  chemistry  with  enhanced  conductivity  for  anion  exchange membranes. International Journal of Hydrogen Energy. 2021, 46:10377-10388. 
[11] Liu D, Lin LM, Xie YJ, et al. Anion exchange membrane based on poly(arylene ether ketone)  containing  long  alkyl  densely  quaternized  carbazole  derivative  pendant. Journal of Membrane Science. 2021, 623: 119079. 
[12] Wang Y, Zhang D Y, Liang X, et al. Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain[J]. Journal of Membrane Science, 2020, 595: 117483.
[13] Zhang F, He X H, Cheng C W, et al. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane[J].  International journal of hydrogen energy, 2020, 45: 13090-13100.
[14] Zhang Y, Wan Y, Zhao C G, et al. Novel side-chain-type sulfonated poly(arylene ether ketone) with pendantsulfoalkyl groups for direct methanol fuel cells [J]. Polymer, 2009, 50: 4471-4478.
[15] Kim S, Lee H, Ahn D, et al. Direct sulfonation and photo crosslinkin go fun saturated poly(styrene-b-butadiene-b-styrene) for protonexchange membrane of direct methanol fuel cell [J]. Journal of Membrane Science, 2013, 427: 85-91.
 [16] Chen S Li, Bocarsly A B, Benziger J. Nafion-layered sulfonated polysulfone fuel cell membranes [J]. Journal of Power Sources, 2005, 152: 27-33.
[17] Ekström H, Lafitte B, Ihonen J, et al. Evaluation of a sulfophenylated polysulfone membrane in a fuel cell at 60 to 110 °C [J]. Solid State Ionics 2007, 178: 959-966.
[18] Wang G G, Weng Y M, Chu D, et al. Developing a polysulfone-based alkaline anion exchange membranefor improved ionic conductivity [J]. Journal of Membrane Science 2009, 332: 63-68.
[19] 黄雁,沈家瑞. 淀粉-丙烯酰胺接枝共聚物增稠能力的研究[J].高分子材料科学与工程,1995(03):98-102.
[20] 胡合新,孙斌,王恩泉.己内酰胺中挥发性碱杂质的控制[J].石油学报,2012,28(02):225-230.
[21] 亓育杰,杨昱,郑张瑜,等. 噻呋酰胺的光解和水解特性研究[J].农药学学报,2016,18(04):540-544.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号