基于油水分离的氧化石墨烯/二氧化硅复合膜的制备与性能研究
作者:袁茹欣,陈文革,栗雯绮,李拥璇
单位: 西安理工大学 材料科学与工程学院,陕西西安 710048
关键词: 氧化石墨烯;油水分离;层状结构;复合膜
出版年,卷(期):页码: 2022,42(3):97-105

摘要:
 为了提升纯氧化石墨烯膜的油水分离性能,以氧化石墨烯(GO)粉末为原料,微米二氧化硅(SiO2)粉末为改性添加剂,乙二胺(EDA)为交联剂,纤维素微孔滤膜为基底膜,采用真空抽滤技术制备了氧化石墨烯二氧化硅(GO/SiO2)复合薄膜用于油水分离,采用SEM、XRD和AFM分别分析了GO/SiO2复合薄膜的微观形貌、物相组成和表面粗糙度,研究了改变添加剂的含量对GO/SiO2复合薄膜亲水性能、渗透通量、油水乳液分离性能以及循环使用性能的影响。结果显示,SiO2颗粒插入GO纳米片层之间,EDA联结相邻的GO纳米片,形成多孔纳米通道,复合薄膜GO/SiO2的质量比为1:2时,性能最佳,纯水渗透通量可达839 L?m-2?h-1,平均接触角55.42?,不同种类的油水乳液截留率达到99.4 %。循环试验表明,在6次循环后仍能保持99.6 %的高截留率。
 In order to improve the oil/water separation performance of graphene oxide(GO) membrane, GO/SiO2 composite membrane were obtained by assembling graphene oxide nanosheets with silicon oxide (SiO2) as a modified additive, cellulose microporous filter membrane as the base membrane and using ethylenediamine to crosslink them with the assistance of vacuum filtration, for oil/water separation. The microstructures, crystal structures and roughness of GO/SiO2 composite membrane were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD) and atomic force microscopy(AFM), respectively. The properties of the hydrophilic, permeability flux, oil/water emulsion separation and recycling uses of GO/SiO2 composite membrane were studied by changing the content of additives. The results show that the GO/SiO2 composite membrane has the optimal performance when the quality ratio of GO and SiO2 is 1:2. SiO2 particles were embedded between the GO nanosheets, with EDA molecules anchored between the adjacent GO nanosheets, forming microporous nanostructures. The pure water flux of composite membrane reached 839 L?m-2?h-1, and the average contact angle reached 55.42°, and the rejection ratio reached 99.4% in different types of oil/water emulsion. The composite membrane maintained the high rejection ratio which was more than 99.6% after six cycles tests. 
袁茹欣(1997— ),女,硕士,研究方向为氧化石墨烯在污水处理中的应用

参考文献:
 [1] 王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462.
[2] 李桂水, 王庆港, 陈 皓, 等. 用于油水分离过程中的膜材料及其制备与改性的综述[J]. 天津科技大学学报, 2021, 36(4): 1-7.
[3] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry a, 2017, 5(31): 16025-16058.
[4] Zhang N, Qi Y, Zhang Y, et al. A Review on Oil/Water Mixture Separation Material[J]. Industrial and Engineering Chemistry Research, 2020, 59(33): 14546-14568.
[5] El-samak A A, Ponnamma D, Hassan M K, et al. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments[J]. Polymer Reviews, 2020, 0(4): 1-46.
[6] Bengani-lutz P, Zaf R D, Culfaz-emecen P Z, et al. Extremely fouling resistant zwitterionic copolymer membranes with ~ 1nm pore size for treating municipal, oily and textile wastewater streams, Journal of Membrane Science[J]. Journal of Membrane Science, 2017, 543(5): 184-194.
[7] A?ta? M, Dilaver M, Koyuncu ?. Halloysite nanoclay doped ceramic membrane fabrication and evaluation of textile wastewater treatment performance[J]. Elsevier, 2021, 154(154): 0-72.
[8] 成小翔, 梁 恒. 陶瓷膜饮用水处理技术发展与展望[J]. 哈尔滨工业大学学报, 2016, 48(8): 1-10.
[9] Habibi Y, Lucia L A, Rojas O J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications[J]. Chem Rev, 2010, 110(6): 3479-3500.
[10] Mi B. Graphene Oxide Membranes for Ionic and Molecular Sieving[J]. Science, 2014, 343(6172): 740-742.
[11] Huang L, Zhang M, Li C, et al. Graphene-Based Membranes for Molecular Separation[J]. J Phys Chem Lett, 2015, 6(14): 2806-2815.
[12] Fu X. Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification[J]. Carbon, 2013(10): 465-471.
[13] Koushkbaghi S, Jafari P, Rabiei J, et al. Fabrication of PET/PAN/GO/Fe3O4 nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions[J]. Chemical Engineering Journal, 2016, 301(5): 42-50.
[14] Sun P, Wang K, Zhu H. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications[J]. Advanced Materials, 2016, 28(12): 2287-2310.
[15] Mi. Enabling Graphene Oxide Nanosheets as Water Separation Membranes[J]. Environmental Science & Technology: Es&t, 2013, 3(8): 3715-3723.
[16] Peng X. Graphene oxide nanosheet: an emerging star material for novel separation membranes[J]. Journal of Materials Chemistry a, 2014, 56(34): 13772-13783.
[17] Han Y, Jiang Y, Gao C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes[J]. Acs Appl Mater Interfaces, 2015, 12(15): 8147-8153.
[18] 章 畅, 王巧英, 吴志超. 亲水/水下超疏油的油水分离膜的制备及性能[J]. 净水技术, 2019, 38(2): 86-92.
[19] Peng G, Liu Z, Sun D. The efficient separation of surfactant stabilized oil/water emulsions with a flexible and superhydrophilic graphene/TiO2 composite membrane[J]. Journal of Materials Chemistry a, 2014(34): 14082-14088.
[20] Wang H, Wang M, Wang Y, et al. Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites[J]. Separation and Purification Technology, 2021, 276(13): 119-268.
[21] Mi X, Huang G, Xie W, et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions[J]. Carbon, 2012, 50(13): 4856-4864.
[22] Akbari A, Sheath P, Martin S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7(1): 10891.
[23] Zhang Y, Zhang S, Chung T. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration[J]. Environmental Science & Technology, 2015, 49(16): 10235-10242.
[24] Wang S, Liu K, Yao X, et al. Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications[J]. Chem Rev, 2015, 115(16): 8230-8293.
[25] Liang S, Xiao K, Zhang S, et al. A facile approach to fabrication of superhydrophilic ultrafiltration membranes with surface-tailored nanoparticles[J]. Separation and Purification Technology, 2018, 203(6): 251-259.
[26] Zhao X, Su Y, Liu Y, et al. Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation[J]. Acs Appl. Mater. Interfaces, 2016, 8(12): 8247-8256.
[27] Cai Y, Li J, Yi L, et al. Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals[J]. Applied Surface Science, 2018, 450(5): 102-111.
[28] Liu Y, Zhang F, Zhu W, et al. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal[J]. Carbon, 2020, 160(5): 88-97.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号