基于有限体积法的卷式膜组件流道内多场模拟研究
作者:管徽,林培锋,俞三传
单位: 1.浙江理工大学理学院,杭州 310018; 2.浙江理工大学机械与自动控制学院,杭州 310018
关键词: 卷式膜组件;有限体积法;多场模拟;构型优化
出版年,卷(期):页码: 2022,42(3):129-134

摘要:
 论文采用有限体积法( FVM )对卷式膜组件流道中流场与浓度场进行多场模拟研究,分析了(60o、90o与120o)三种不同导流网丝之间夹角下卷式膜组件流道内速度、压力以及膜面剪切应力分布。模拟结果表明:随着导流网丝之间夹角逐渐增大,流道内流体流速增加,膜面附近浓差极化减弱。当导流网丝之间夹角从60o增加到90o时,膜面壁面剪切应力增加12%,流道内沿程压降增加10%,从90o增加到120o时,膜面壁面剪切应力增加14%,流道内沿程压降增加15%。因此,在能量损失允许的范围内,适当的增加导流网丝之间夹角利于缓解膜面附近浓差极化。
This study focused on the multi-field simulation of the flow channel of spiral wound membrane module by finite volume method (FVM). The (FVM) The fluid velocity, pressure and wall shear stress distributions within the flow channel of spiral wound membrane module with the feed spacer of different filament included angles (60o, 90o and 120o) were simulated by FVM method. The results showed that, with the increase of the included angle between filaments of feed spacer, the velocity of the fluid within the channel increased and the concentration polarization near membrane surface became weakened. With the included angle ascended from 60o to 90o, the wall shear stress on the membrane surface was enhanced by 12% and the pressure drop along the flow channel increased by 10%. When the included angle ascended from 90o to 120o, the wall shear stress on the membrane surface was enhanced by 14% and the pressure drop along the flow channel increased by 15%. Therefore, as far as the loss of energy is allowed, the increase of included angle between the filaments of feed spacers was beneficial to alleviate the concentration polarization near the membrane surface.
管徽(1999.09--),男,安徽六安人,硕士生,从事膜分离技术研究

参考文献:
[1] 朱长乐. 膜科学技术[M]// 杭州: 浙江大学出版社, 2004: 300-306. 
[2] Amokrane M, Sadaoui D, Koutsou C P, et al. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination[J]. Journal of Membrane Science, 2015, 477: 139-150.
[3] Schewing J, Wiley D E, Fletcher D F. Simulation of the flow around spacer filaments between channel walls. 2. mass-transfer enhancement[J]. Industrial & Engineering Chemistry Research, 2002, 41(19): 4879-4888.
[4] Li F, Meinderma W, Haan A B D, et al. Novel spacers for mass transfer enhancement in membrane separation[J]. Journal of Membrane Science, 2005, 253(1-2): 1-12.
[5] 王福军.计算流体力学动力学分析-CFD软件原理与应用[M]// 北京:清华大学出版社, 2004, 1-3.
[6] Reid K, Dixon M, Pelekani C, et al. Biofouling control by hydrophilic surface modification of. polypropylene feed spacers by plasma polymerization[J]. Desalination, 2014, 335: 108–118.
[7] Sciwing J, Wiley D E, Fletcher D F. A CFD study of unsteady flow in narrow spacers-filled channels for spiral-wound membrane modules[J]. Desalination, 2002, 146(1-3): 195-201.
[8] Tan Y Z, Mao Z M, Zhang Y J, et al. Enhancing fouling mitigation of submerged flat-sheet membranes by vibrating 3D-spacers[J]. Separation and Purification Technology, 2019, 215:70–80.
[9] Fritzmann C, Hausmann M, Wiese M, et al. Microstructure spacers for submerged membrane filtration systems[J]. Journal of Membrane Science, 2013, 446(11): 189–200.
[10] Thomas N, Sreedhar N, Al-Ketan O, et al. 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation[J]. Desalination, 2018, 443:256–271.
[11] Saeed A, Vuthaluru R, Yang Y, et al. Effect of feed spacer arrangement on flow dynamics through spacer filled membranes[J]. Desalination, 2012, 285:163-169
[12] Fimbres-Weihs G A, Wiley D E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J]. Journal of Membrane Science, 2007, 306(15): 228-243.
[13] 王涛, 何欣平, 吴珍,等. 平板膜组件隔网构型的CFD的模拟[J]. 膜科学与技术,2017, 37(3): 89-96.
[14] 方健, 张峰, 仲兆祥,等. CFD应用于反渗透膜组件隔网构型的优化研究[J]. 膜科学与技术,2018, 38(1):74-80.
[15] Bucs S S, Radu A l, Lavric V. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study[J]. Desalination, 2014, 343:26-37.
[16] Shakib M, Hasnai S M F, Mahmood M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels[J]. Journal of Membrane Science, 2009(2), 326: 270-284.
[17] Li M H, Bui T, Chao S, et al. Three-dimensional CFD analysis of hydrpdynamics and concertration polarization in an industrial RO feed channel[J]. Desalination, 2016, 397:194-204.
[18] Yang F, Bick A, Shandalov S, et al. Yield stress and rheological characteristics of activated sludge in an air-lift membrane bioreactior[J]. Journal of Membrane Science, 2009, 334(1/2): 83-90. 
[19] 杜星, 张开朗, 关妙婷,等. 压力驱动膜系统中流体剪切力以及对膜污染的影响[J]. 膜科学与技术, 2018, 38(6):138-148.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号