曝气辅助聚多巴胺共沉积膜的制备与表征
作者:周庆莹,刘四华,厍景国,宋姿萍,高海富,王 暄,武春瑞,吕晓龙
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津 300387
关键词: 曝气辅助沉积法;聚多巴胺/聚乙烯亚胺;中空纤维膜;亲水改性
出版年,卷(期):页码: 2022,42(5):17-23

摘要:
 聚偏氟乙烯(PVDF)膜具有良好的物理化学稳定性和分离性能,以提升PVDF膜亲水性为目标的膜材料改性研究一直是膜研究的重点。聚多巴胺/聚乙烯亚胺(PDA/PEI)共沉积法可生成性能优异的亲水涂层,是制备亲水膜的重要方法。本研究针对疏水PVDF中空纤维膜的亲水改性,建立了曝气辅助PDA/PEI共沉积法,为多巴胺/聚乙烯亚胺(DA/PEI)溶液提供富氧环境,加快DA和PEI的反应速率,实现疏水中空纤维膜快速亲水化。相比于静置沉积,曝气辅助共沉积体系能够在反应90min后获得性能良好的亲水改性膜。曝气辅助沉积改性膜接触角为45.3°,纯水通量为201.2L/(m2·h),渗透性能显著提升;改性膜具有优异BSA截留率。
  Polyvinylidene fluoride (PVDF) membrane has good physical and chemical stability and separation performance. Improving the hydrophilicity of PVDF membranes has always been a hotspot of membrane modification. Polydopamine/polyvinyl imine (PDA/PEI) co-deposition is an important method to produce hydrophilic membranes with excellent properties. In this study, for hydrophilic modification of hydrophobic PVDF hollow fiber membranes, an aeration-assisted PDA/PEI co-deposition method was established to provide an oxygen-rich environment for DA/PEI solution. This strategy accelerated the reaction rate of DA and PEI, and achieved rapid hydrophilic modification of hydrophobic hollow fiber membranes. Compared with the static deposition, the aeration-assisted co-deposition method can increase the hydrophilicity of the modified membranes greatly after 90min reaction. The contact angle of the modified membranes was 45.3°, the pure water flux was 201.2L/(m2·h), and the permeability was significantly improved. The modified membranes had excellent BSA rejection.
周庆莹(1996-),女,天津市人,硕士研究生,研究方向为分离膜制备与应用;E-mail:zhouqingying1996@163.com

参考文献:
 [1] 赵冰, 王军, 田蒙奎. 我国膜分离技术及产业发展现状[J]. 现代化工, 2021, 41(02): 6-10.
[2] 夏宇, 郭永福, 李焱, 等. 聚偏氟乙烯膜亲水化改性研究进展[J]. 工业水处理, 2016, 36(10): 1-5.
[3] 金宇涛, 林亚凯, 田野, 等. 热致相分离法制备聚偏氟乙烯膜亲水改性研究进展[J]. 工业水处理, 2021, 41(02): 26-32+37.
[4] Fane A G, Wang R, Hu M X. Synthetic Membranes for Water Purification: Status and Future[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3368-3386.
[5] Jang H, Song D H, Kim I C, et al. Fouling control through the hydrophilic surface modification of poly(vinylidene fluoride) membranes[J]. Journal of Applied Polymer Science, 2015, 132(21).
[6] 房平, 张萌, 梁右才, 等. PAA/OMWCNTs/PVDF共混膜处理乳化油废水[J]. 水处理技术, 2021, 47(09): 46-48+57.
[7] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
[8] Zhang C, Gong L, Xiang L, et al. Deposition and Adhesion of Polydopamine on the Surfaces of Varying Wettability[J]. Acs Applied Materials & Interfaces, 2017, 9(36): 30943-30950.
[9] Hong S, Na Y S, Choi S, et al. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation[J]. Advanced Functional Materials, 2012, 22(22): 4711-4717.
[10] Clancy C M R, Nofsinger J B, Hanks R K, et al. A hierarchical self-assembly of eumelanin[J]. Journal of Physical Chemistry B, 2000, 104(33): 7871-7873.
[11] Yang H C, Pi J K, Liao K J, et al. Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation[J]. Acs Applied Materials & Interfaces, 2014, 6(15): 12566-12572.
[12] Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230.
[13] Lv Y, Yang S J, Du Y, et al. Co-deposition Kinetics of Polydopamine/Polyethyleneimine Coatings: Effects of Solution Composition and Substrate Surface[J]. Langmuir, 2018, 34(44): 13123-13131.
[14] Ball V, Del Frari D, Toniazzo V, et al. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism[J]. Journal of Colloid and Interface Science, 2012, 386: 366-372.
[15] Tahroudi Z M, Razmjou A, Bagherian M, et al. Polydopamine surface modification with UV-shielding effect using KMnO4 as an efficient oxidizing agent[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2018, 559: 68-73.
[16] Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability[J]. Angewandte Chemie-International Edition, 2016, 55(9): 3054-3057.
[17] Kim H W, Mccloskey B D, Choi T H, et al. Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry[J]. Acs Applied Materials & Interfaces, 2013, 5(2): 233-238.
[18] Yang H C, Wu Q Y, Wan L S, et al. Polydopamine gradients by oxygen diffusion controlled autoxidation[J]. Chemical Communications, 2013, 49(89): 10522-10524.
[19] Wang G J, Wu B H, Xu Z K, et al. Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration[J]. Materials Chemistry Frontiers, 2019, 3(10): 2102-2109.
[20] 苏婉, 张文娟, 张宇峰. PDA与PEI共沉积和分步沉积方法对纳滤膜性能的影响[J]. 膜科学与技术, 2020, 40(03): 14-21.
[21] Wang J C, Tian J Y, Gao S S, et al. Dopamine triggered one step polymerization and codeposition of reactive surfactant on PES membrane surface for antifouling modification[J]. Separation and Purification Technology, 2020, 249.
[22] Yang H C, Wu M B, Li Y J, et al. Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine[J]. Journal of Applied Polymer Science, 2016, 133(32).
[23] Chen H, Li Y, Wang Q Q, et al. Modified polyvinylidene fluoride ultrafiltration membrane coated with polydopamine/3-(2,3-epoxypropoxy) propyl triethoxy silane[J]. Polymers for Advanced Technologies, 2021, 32(4): 1597-1603.
[24] Cheng K, Zhang N, Yang N, et al. Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance[J]. Separation and Purification Technology, 2021, 262.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号