无机柱中心强化的二次生长法制备KAUST-7气体分离膜
作者:崔燕雯,吕金印,杨建华,鲁金明,张 艳
单位: 大连理工大学 吸附与无机膜研究所,精细化工国家重点实验室,大连 116024
关键词: KAUST-7分离膜; 无机柱中心; 二次生长法; H2分离
出版年,卷(期):页码: 2022,42(5):24-32

摘要:
 超微孔KAUST-7氟化金属有机骨架化合物具有3.0-4.8 Å的孔道,对于CO2、丙烯等气体具有特异性吸附,是一种潜在的小分子气体分离膜材料。本研究提出采用无机柱中心强化的二次生长法制备KAUST-7膜。首先采用无机柱中心法合成晶种,通过调节合成液中乙醇含量控制晶体的尺度及形貌,得到70 nm的KAUST-7小晶种。由预先合成的无机柱中心(NbOF5)2-代替氢氟酸和Nb2O5为氟源及铌源,考察了热浸渍和层层组装法制备的晶种层对于大孔α-Al2O3载体管上二次生长法制备KAUST-7膜的影响。层层组装晶种二次生长法制备出的高性能KAUST-7气体分离膜对于H2的渗透速率为2.23 × 10-7 mol·m-2·s-1·Pa-1,H2/CO2、H2/N2和H2/CH4的理想选择性分别为24.9、17.3和13.0。本方法不但突破了原合成液中含有的氢氟酸对于氧化铝载体的腐蚀导致难以成膜的挑战,而且实现了温和条件下KAUST-7分离膜的制备,也为含腐蚀性反应体系制备分离膜提供了借鉴。
  The ultra-microporous KAUST-7 fluorinated metal-organic framework contains pores with a size of 3.0-4.8 Å and has the specific adsorption for propylene and CO2, which is a potential membrane material candidate for the separation of small-molecule gases. In this study, the inorganic pillar center-facilitated secondary growth method was proposed to fabricate continuous KAUST-7 membranes. Firstly, KAUST-7 crystals were synthesized via inorganic pillar center-facilitated method. The size and morphology of KAUST-7 crystals were manipulated by adjusting ethanol volume ratio in the solvent, under the optimized condition, nano KAUST-7 crystals (~70 nm) were obtained. The KAUST-7 membrane fabricated by secondary growth on α-Al2O3 tubes using (NbOF5)2- inorganic pillar as fluorine and niobium sources, and the effect of seed layer prepared by hot dip-coating method and layer by layer (LBL) method were investigated. The KAUST-7 membrane with higher separation performance was fabricated by LBL seed method, which showed a H2 permeance of 2.23 × 10-7 mol·m-2·s-1·Pa-1 and achieved the ideal selectivities up to 24.86, 17.34 and 12.95 for H2/CO2, H2/N2 and H2/CH4, respectively. The substitution of concentrated HF with pre-synthesized NiNbOF5 inorganic pillar center avoids the hydrofluoric acid corrosion to α-Al2O3 supports by one-pot synthesis, which contributed to the fabrication of gas-separation membrane under mild conditions.
崔燕雯(1996-),女,新疆昌吉人,硕士研究生,研究方向为MOF膜的制备与应用, E–mail:cuiyanwen20@163.com

参考文献:
 [1] Ryu U, Jee S, Rao P C, et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks[J]. Coord Chem Rev, 2021, 426: 213544-213616.
[2] Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations[J]. Coord Chem Rev, 2020, 422: 213470-213489.
[3] Qian Q, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chem Rev, 2020, 120(16): 8161-8266.
[4] Shi D, Yu X, Fan W, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coord Chem Rev, 2021, 437: 213794-213822.
[5] Wei R, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Adv Func Mater. 2020, 30(7): 1907089-1907095.
[6] Zhou S, Wei Y, Li L, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Sci Adv. 2018, 4(10): 1393-1400.
[7] Li W, Su P, Li Z, et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition[J]. Nat Commu. 2017, 8(1): 406-413.
[8] Ma X, Kumar P, Mittal N, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselec-tivation[J]. Science. 2018, 361(6406): 1008-1011.
[9] Hou Q, Zhou S, Wei Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation[J]. J Am Chem Soc. 2020, 142: 9582-9586.
[10] Ma Q, Mo K, Gao S S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angew Chem Int Ed. 2020, 59(49): 21909-21914.
[11] Wang Y, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew Chem Int Ed. 2020, 59(11): 4365-4369.
[12] Deng A, Shen X, Wan Z, et al. Elimination of grain boundary defects in zeolitic imidazolate framework ZIF-95 membrane via solvent-free secondary growth[J]. Angew Chem Int Ed. 2021, 60(48): 25463-25467.
[13] Chiou D S, Yu H J, Hung T H, et al. Highly CO2              selective metal–organic framework membranes with favorable coulombic effect[J]. Adv Func Mater. 2021, 31(4): 2006924-2006934.
[14] Sun Y, Liu Y, Caro J, et al. In-plane epitaxial growth of highlyc-oriented NH2-MIL-125 (Ti) membranes with Superior H2/CO2 selectivity[J]. Angew Chem Int Ed. 2018, 57(49): 16088-16093.
[15] Rui Z, James J B, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production[J]. AIChE J. 2016, 62(11): 3836-3841.
[16] Fan W, Ying Y, Peh S B, et al. Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation[J]. J Am Chem Soc. 2021, 143(42): 17716-17723.
[17] Hou Q, Wu Y, Zhou S, et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation[J]. Angew Chem Int Ed. 2019, 58(1): 327-331.
[18] Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140.
[19] Bhatt P M, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2              removal and air capture using physisorption[J]. J Am Chem Soc, 2016, 138(29): 9301-9307.
[20] Belmabkhout Y, Zhang Z, Asil K, et al. Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I-structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation[J]. Chem Eng J, 2019, 359: 32-36.
[21] Tchalala M R, Bhatt P M, Chappanda K N, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air[J]. Nat Comm, 2019, 10(1): 1328-1337.
[22] Liu G, Cadiau A, Liu Y, et al. Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2              from natural Gas[J]. Angew Chem Int Ed, 2018, 57(45): 14811-14816.
[23] Chen K, Xu K, Xiang L, et al. Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals[J]. J Membr Sci, 2018, 563: 360-370.
[24] Lv J, Cui Y, Yang J, et al. Inorganic pillar center-facilitated counter diffusion synthesis for highly H2 perm-selective KAUST-7 membranes[J]. ACS Appl Mate & Interfaces, 2022, 14(3): 4297-4306. 
[25] Sindoro M, Jee A, Granick S, et al. Shape-selected colloidal MOF crystals for aqueous use[J]. Chem Comm, 2013, 49(83): 9576-9578.
[26] Cheng L, Yang J, Saulat H, et al. Fabrication and orientation of Ni-LAB membranes by linker salt approach[J]. Microporous Mesoporous Mater, 2019, 287: 135-143.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号