Pebax1657/聚糠醇基炭球混合基质膜的制备及性能研究
作者:蔡钦兴,丁晓莉,赵红永,张玉忠
单位: 天津工业大学,省部共建分离膜与膜过程国家重点实验室,天津 300387
关键词: 气体分离膜;混合基质膜;炭球;CO2分离
出版年,卷(期):页码: 2022,42(5):42-47

摘要:
 以糠醇为单体,聚醚(F127)为表面活性剂,通过乳液聚合法合成了聚糠醇微球,并以其为前驱体,通过程序控温炭化制备了聚糠醇基炭球。将聚糠醇基炭球作为填料加入到Pebax1657中制备了Pebax1657/聚糠醇基炭球混合基质膜,研究了聚糠醇基炭球的含量对膜性能的影响。结果表明,混合基质膜随着聚糠醇基炭球含量的增加,膜的渗透性能逐渐增大,选择性略有下降。在0.2 MPa,35 ℃的条件下,聚糠醇基炭球的含量为50 wt.%时,CO2渗透系数高达423 Barrer,CO2/N2的分离系数为43.6,CO2/CH4的分离系数为13.2。
 Using furfuryl alcohol as the monomer and polyether (F127) as the surfactant, the poly(furfuryl alcohol) microspheres were synthesized by emulsion polymerization. Then the poly(furfuryl alcohol) microspheres were used as precursors to prepare carbon microspheres by programmable temperature-controlled carbonization. The poly(furfuryl alcohol) based carbon microspheres were added into Pebax1657 as the fillers to prepare the Pebax1657/carbon microspheres mixed matrix membranes. The effects of loading amount of carbon microspheres on the performance of membranes were investigated. The results showed that the permeability of the membranes increased gradually as the loading of poly(furfuryl alcohol) based carbon microspheres increased while the selectivity decreased slightly. The optimal mixed matrix membranes with 50 wt.% loading of fillers showed the CO2 permeability coefficient of 423 Barrer, the CO2/N2 selectivity of 43.6, and the CO2/CH4 selectivity of 13.2 at 0.2 MPa and 35 ℃.
蔡钦兴(1997-),男,山东泰安人,硕士,主要从事气体分离膜研究。E-mail:2456899952@qq.com

参考文献:
 [1] Zhang Y M, Wang H X, Liu J D, et al. Enzyme-embedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture[J]. J Mater Chem A, 2017, 5(37): 19954-19962.
[2] Zou C C, Li Q Q, Hua Y Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Appl Mater Interfaces, 2017, 9(34): 29093-29100.
[3] Park H B, Han S H, Jung C H, et al. Thermally rearranged (TR) polymer membranes for CO2 separation[J]. J Membr Sci, 2010, 359(1-2): 11-24.
[4] George G, Bhoria N, Alhallaq S, et al. Polymer membranes for acid gas removal from natural gas[J]. Sep Purif Technol, 2016, 158: 333-356.
[5] Alqaheem Y, Alomair A, Vinoba M, et al. Polymeric gas-separation membranes for petroleum refining[J]. Int J Polym Sci, 2017, 2017: 1-19.
[6] Dalane K, Dai Z, Mogseth G, et al. Potential applications of membrane separation for subsea natural gas processing: A review[J]. J Nat Gas Sci Eng, 2017, 39: 101-117.
[7] Car A, Stropnik C, Yave W, et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation[J]. J Membr Sci, 2008, 307(1): 88-95.
[8] Yu B, Cong H L, Li Z J, et al. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation[J]. J Appl Polym Sci, 2013, 130(4): 2867-2876.
[9] Chen J C, Feng X S, Penlidis A. Gas permeation through poly(ether-b-amide) (PEBAX 2533) block copolymer membranes[J]. Sep Sci Technol, 2004, 39(1): 149-164.
[10] Ghadimi A, Mohammadi T, Kasiri N. A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams[J]. Ind Eng Chem Res, 2014, 53(44): 17476-17486.
[11] Zhao D, Ren J Z, Li H, et al. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes[J]. J Membr Sci, 2014, 467: 41-47.
[12] Wiryoatmojo A S, Mannan H A, Nasir R, et al. Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation performance of mixed matrix membranes[J]. Polym Test, 2019, 80: 106152.
[13] Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results[J]. J Membr Sci, 2003, 211(2): 311-334.
[14] Anson M, Marchese J, Garis E, et al. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation[J]. J Membr Sci, 2004, 243(1-2): 19-28.
[15] Wang H, Zheng W J, Yang X C, et al. Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation[J]. Sep Purif Technol, 2021, 274, 119015.
[16] Yao J F, Wang H T, Jin L, et al. Preparation of colloidal microporous carbon spheres from furfuryl alcohol[J]. Carbon, 2005, 43(8): 1709-1715.
[17] Li S P, Liu Y, Wong D A, et al. Recent advances in polymer-inorganic mixed matrix membranes for CO2 separation[J]. Polymers, 2021, 13(15): 2539.
[18] Raeizah W A W, Ismail A F. Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane[J]. J Membr Sci, 2008, 307(1): 53-61.
[19] Meshkat S, Kaliaguine S, Rodrigue D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax MH-1657 for CO2 separation[J]. Sep Purif Technol, 2018, 200: 177-190.
[20] Estahbanati E G, Omidkhah M, Amooghin A E. Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO2/light gases separation[J]. J Ind Eng Chem, 2017, 51: 77-89.
[21] Xu L W, Xiang L, Wang C Q, et al. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals[J]. Chin J Chem Eng, 2017, 25(7): 882-891.
[22] Estahbanati E G, Omidkhah M, Amooghin A E. Interfacial design of ternary mixed matrix membranes containing Pebax 1657/silver-nanopowder/[BMIM][BF4] for improved CO2 separation performance[J]. ACS Appl Mater Interfaces, 2017, 9(11): 10094-10105.
[23] Mosleh S, Khanbabaei G, Mozdianfard M, et al. Application of poly (amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation[J]. Iran Polym J, 2016, 25(12): 977-990.
[24] Shamsabadi A A, Seidi F, Salehi E, et al. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles[J]. J Mater Chem A, 2017, 5(8): 4011-4025.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号