造孔剂对电纺炭纤维膜微结构与性能的影响
作者:白林战,王新艳,孙晞超,黄莉兰,高学理,李蛟
单位: 山东理工大学 材料科学与工程学院,山东 淄博 255000;.山东招金膜天股份有限公司,山东 烟台 265400; 中国海洋大学 海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100
关键词: 静电纺丝;柔性炭纤维;多孔结构;油水分离
出版年,卷(期):页码: 2022,42(6):70-76

摘要:
 采用静电纺丝技术与氩气保护炭化工艺,以聚丙烯腈为碳源,制备了系列柔性炭纤维膜。对比研究了不同造孔剂磺基琥珀酸钠二辛酯(NaAOT)、醋酸锌(ZnAc)以及对苯二甲酸(PTA)掺杂对炭纤维膜微结构、力学以及油水分离等性能的影响。 结果表明,与未掺杂造孔剂的炭纤维(CF)相比,掺杂NaAOT、ZnAc、PTA的炭纤维内部均出现一定数量孔隙结构,孔隙分别以微孔、微孔与介孔、大孔为主,且膜柔韧性与抗拉强度均高于未掺杂造孔剂的CF膜。其中,掺杂ZnAc造孔剂的炭膜(ZnAc-CF)具有最佳的柔韧性与最高的抗拉强度(0.97 MPa)。此外,三种造孔剂的掺杂均在一定程度上增大了炭纤维直径,从而导致NaAOT-CF 、ZnAc-CF和PTA-CF膜均表现出更好的疏水性能。ZnAc-CF膜展现出最好的油水分离性能,其油通量达到3440 L/(m2·h),对未乳化的油水混合物分离循环50次后,分离效率依然可维持在98%左右
 A series of flexible carbon fiber membranes were prepared by electrospinning and heat treatment with polyacrylonitrile as carbon source. The effects of doping with different pore formers such as sodium dioctyl sulfosuccinate (NaAOT), zinc acetate (ZnAc) and terephthalic acid (PTA) on the microstructure, mechanics and oil-water separation properties of carbon fiber membranes were comparatively studied. The results showed that a certain number of pore structures appeared in the carbon fiber doped with NaAOT, ZnAc and PTA, and the pores were mainly microporous, microporous, mesoporous and macroporous respectively, compared with the carbon fiber (CF) without pore forming agent. Meanwhile, the flexibility and tensile strength of the membranes doped with pore fomers were stronger than that of the CF membrane without pore forming agent. Among them, the carbon fiber membrane doped with ZnAc  (ZnAc-CF) exhibited the best flexibility and the highest tensile strength (0.97 MPa). In addition, the doping of three pore forming agents increased the diameter of carbon fiber, resulting in better hydrophobic properties of CF-NaAOT, CF-ZnAc and CF-PTA membranes. CF-ZnAc membrane showed the most outstanding oil-water separation performance, and the oil flux could reach 3440 L/(m2·h). After 50 cycles of separation of non-emulsified oil-water mixture, the separation efficiency of CF-ZnAc could  maintain at about 98%.
白林战(1997-),男,山东济宁人,硕士生,主要从事功能膜电纺制备及性能研究

参考文献:
 [1]Dhaka A, Chattopadhyay P. A review on physical remediation techniques for treatment of marine oil spills[J]. J. Environ. Manage., 2021, 288: 112428(1-17). 
[2]王长青,张西华,宁朋歌, 等.含油废水处理工艺研究进展及展望[J].化工进展,2021,40(01):451-462.
[3]Sun Y, Guo Z. Novel and cutting-edge applications for a solvent-responsive superoleophobic-superhydrophilic surface: water-infused omniphobic surface and separating organic liquid mixtures [J]. Chem. Eng. J., 2020, 381:122629(1-9).
[4]程建雯, 尚倩倩, 雷文, 等. 油水分离用超疏水纤维素基织物的制备及研究进展[J]. 化学通报, 2021, 84(6): 524-529.
[5]苏航, 谢子萱, 漆虹. 多孔SiC陶瓷表面的超疏水改性及其对油-固体系的分离性能[J]. 膜科学与技术, 2022, 42(2): 8-15,24.
[6]Li S, Zhang L, Yin X, et al. Efficient photocatalysis improves the self-cleaning property of the superwetting nanofibrous membrane toward emulsified oily wastewater[J]. J. Membr. Sci., 2022, 650: 120440(1-12).
[7]钱明, 孟娇, 郎万中. 海藻酸钙改性聚偏氟乙烯静电纺丝膜用于油水乳液的自重驱动分离[J]. 膜科学与技术, 2022, 42(2): 89-94.
[8]Ju X, Lu J-P, Zhao L-L, et al. Electrospun transition layer that enhances the structure and performance of thin-film nanofibrous composite membranes[J]. J. Membr. Sci., 2021, 620: 118927(1-11).
[9]Zhao Y, Guo J, Li Y, et al. Superhydrophobic and superoleophilic PH-CNT membrane for emulsified oil-water separation[J]. Desalination, 2022, 526: 115536(1-10).
[10]Xiong C, Quan Z, Zhang H, et al. Hierarchically tunable structure of polystyrene-based microfiber membranes for separation and selective adsorption of oil-water[J]. Appl. Surf. Sci., 2020, 532: 147400(1-12).
[11]Doan H N, Vo P P, Hayashi K, et al. Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation[J]. J. Environ. Chem. Eng., 2020, 8(4): 103921(1-10).
[12]Zhu J Y, Zhang S, Wang L X, et al. Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics [J]. Carbon, 2018, 129: 54-62.
[13]Al-Anzi B S, Siang O C. Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment[J]. RSC advances, 2017, 7(34): 20981-20994.
[14]Liu H, Cao C Y, Wei F F, et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity [J]. J. Mater. Chem. A, 2014, 2: 3557-3562.
[15]Tai M H, Juay J, Sun D D, et al. Carbon-silica composite nanofiber membrane for high flux separation of water-in-oil emulsion - Performance study and fouling mechanism [J]. Sep. Purif. Technol., 2015, 156: 952-960.
[16]Lei W, Portehault D, Liu D, et al. Porous boron nitride nanosheets for effective water cleaning[J]. Nat. Commun, 2013, 4 (1):1939-1945.
[17]Jiang Y, Hou J, Xu J, Shan B. Switchable oil/water separation with efficient and robust Janus nanofiber membranes [J]. Carbon, 2017, 115: 477-485.
[18]Feng S Z, Luo W X, Wang L X, et al. Preparation and property of extremely stable super-hydrophobic carbon fibers with core-shell structure [J]. Carbon, 2019, 150: 284-291.
[19]Pillay V, Dott C, Choonara Y E, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications [J]. J. Nanomater., 2013, 2013:789289(1-22).
[20]Heo E, Noh S, Lee U, et al. Surfactant‐in‐Polymer Templating for Fabrication of CarbonNanofibers withControlled Interior Substructures: Designing Versatile Materials for Energy Applications[J]. Small, 2021, 17(18): 2007775(1-11).
[21]Sun X, Bai L, Li J, et al. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments[J]. Carbon, 2021, 182: 11-22.
[22]Zhu M, Liu Y, Chen M, et al. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development[J]. J. Petrol. Sci. Eng., 2021, 205: 108889(1-17).
[23] Kong F, Xin B. Three-dimensional and flexible carbon nanofiber mat by one-step electrospinning for efficient oil/water separation[J]. Colloids Surf., 2022, 652: 129824(1-11).
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号