两性聚醚醚酮离子交换膜制备及应用
作者:孙 璇,王曙光,张 蓉,江小松,胡 磊,焉晓明,贺高红
单位: 1国家电投集团科学技术研究院有限公司,北京102209;2大连理工大学,辽宁 大连 116024
关键词: 铁铬液流电池;两性聚醚醚酮;离子选择性;膜
出版年,卷(期):页码: 2023,43(2):17-23

摘要:
本文对铁铬液流电池用的离子交换膜进行分子设计,以磺化聚醚醚酮(SPEEK)为基质,通过反应引入叔胺基团,制备了两性聚醚醚酮(ASPEEK)。两性结构促进了膜中高效氢键网络的构建,从而可以形成较大的亲水离子团簇。同时,叔胺基团与磺酸基团之间形成酸碱对效应,有效抑制了膜的吸水溶胀并改善了膜的微相分离结构缩小了离子通道大小。另外,叔胺在酸性环境下质子化之后带有的正电荷可排斥铁铬离子,进而实现了铁铬液流电池库伦效率与能量效率的有效提升。在70 mA/cm2电流密度下铁铬电池性能测试中,ASPEEK膜的库伦效率为96.9%,能量效率达到80.57%。
 By introducing tertiary amine groups into sulfonated polyether ether ketone (SPEEK), amphoteric polyether ether ketone (ASPEEK) were successfully synthesized recently and first investigated as proton exchange membranes for iron-chromium redox flow batteries. Amphoteric structure promotes the construction of high-efficient hydrogen bond network in the membrane, which can form large hydrophilic ion clusters. At the same time, the acid-base pair effect is formed between the tertiary amine group and the sulfonic acid group, which effectively inhibits the water absorption and swelling of the membrane, improves the microphase separation structure of the membrane and reduces the size of the ion channel. In addition, the positive charge of tertiary amine after protonation in acidic environment can repel iron/chromium ions, thus effectively improving the coulomb efficiency and energy efficiency of iron-chromium redox flow battery. ASPEEK membranes exhibit a coulomb efficiency(CE) of 96.9% and the energy efficiency(EE) of 80.57% in iron-chromium redox flow battery at 70 MA / cm2 current density.  
孙 璇(1989.11)籍贯 黑龙江省肇州县,主要研究方向为储能技术

参考文献:
 [1] 杨林;  王含;  李晓蒙;  赵钊;  左元杰;  刘雨佳; 刘赟, 铁-铬液流电池250 kW/1.5 MW·h示范电站建设案例分析. 储能科学与技术 2020, 9 (03), 751-756.
[2] Ding, Y.;  Zhang, C.;  Zhang, L.;  Zhou, Y.; Yu, G., Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47 (1), 69-103.
[3] Zhang, C.;  Zhang, L.;  Ding, Y.;  Peng, S.;  Guo, X.;  Zhao, Y.;  He, G.; Yu, G., Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 2018, 15, 324-350.
[4] Zhang, C.;  Niu, Z.;  Peng, S.;  Ding, Y.;  Zhang, L.;  Guo, X.;  Zhao, Y.; Yu, G., Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries. Adv. Mater. 2019, 31 (24), 1901052.
[5] 胡磊;  高莉;  焉晓明; 贺高红, 全钒液流电池膜离子选择性传导通道构建的研究进展. 化工进展 2020, 39 (06), 2079-2092.
[6] Zhang, H.;  Tan, Y.;  Luo, X. D.;  Sun, C. Y.; Chen, N., Polarization Effects of a Rayon and Polyacrylonitrile Based Graphite Felt for Iron-Chromium Redox Flow Batteries. ChemElectroChem 2019, 6 (12), 3175-3188.
[7] Zhang, H.;  Tan, Y.;  Li, J. Y.; Xue, B., Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance. Electrochim. Acta 2017, 248, 603-613.
[8] Ye, J.;  Zhao, X.;  Ma, Y.;  Su, J.;  Xiang, C.;  Zhao, K.;  Ding, M.;  Jia, C.; Sun, L., Hybrid Membranes Dispersed with Superhydrophilic TiO2, Nanotubes Toward Ultra‐Stable and High‐Performance Vanadium Redox Flow Batteries. Adv. Energy Mater. 2020, 10 (22).
[9] Jiang, B.;  Wu, L.;  Yu, L.;  Qiu, X.; Xi, J., A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 2016, 510, 18-26.
[10] Yang, P.;  Long, J.;  Xuan, S.;  Wang, Y.;  Zhang, Y.;  Li, J.; Zhang, H., Branched sulfonated polyimide membrane with ionic cross-linking for vanadium redox flow battery application. J. Power Sources 2019, 438, 226993.
[11] Huang, X.;  Pu, Y.;  Zhou, Y.;  Zhang, Y.; Zhang, H., In-situ and ex-situ degradation of sulfonated polyimide membrane for vanadium redox flow battery application. J. Membr. Sci. 2017, 526, 281-292.
[12] Lu, W.;  Yuan, Z.;  Zhao, Y.;  Li, X.;  Zhang, H.; Vankelecom, I. F. J., High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ. Sci. 2016, 9 (7), 2319-2325.
[13] Zhang, Y.;  Zheng, L.;  Liu, B.;  Wang, H.; Shi, H., Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery. J. Membr. Sci. 2019, 584, 173-180.
[14] Dai, W.;  Shen, Y.;  Li, Z.;  Yu, L.;  Xi, J.; Qiu, X., SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J. Mater. Chem. A 2014, 2 (31), 12423-12432.
[15] Zhang, Y.;  Wang, H.;  Liu, B.;  Shi, J.;  Zhang, J.; Shi, H., An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries. J. Mater. Chem. A 2019, 7 (20), 12669-12680.
[16] Yuan, Z. Z.;  Li, X. F.;  Hu, J. B.;  Xu, W. X.;  Cao, J. Y.; Zhang, H. M., Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys. Chem. Chem. Phys. 2014, 16 (37), 19841-19847.
[17] Jiang, B.;  Hu, L.;  Yan, X.;  Sun, J.;  Gao, L.;  Dai, Y.;  Ruan, X.; He, G., A new long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) /polybenzimidazole (PBI) amphoteric membrane for vanadium redox flow battery. Chinese J. Chem. Eng. 2020, 28 (7), 1918-1924.
[18] Chen, Y.;  Liu, Z.;  Lin, M.;  Lin, Q.;  Tong, B.; Chen, D., Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Science China Chemistry 2019, 62 (4), 479-490.
[19] Hu, L.;  Gao, L.;  Zhang, C.;  Yan, X.;  Jiang, X.;  Zheng, W.;  Ruan, X.;  Wu, X.;  Yu, G.; He, G., “Fishnet-like” ion-selective nanochannels in advanced membranes for flow batteries. J. Mater. Chem. A 2019, 7 (37), 21112-21119.
[20] Hu, L.;  Gao, L.;  Yan, X.;  Zheng, W.;  Dai, Y.;  Hao, C.;  Wu, X.; He, G., Proton delivery through a dynamic 3D H-bond network constructed from dense hydroxyls for advanced ion-selective membranes. J. Mater. Chem. A 2019, 7 (25), 15137-15144.
[21] Hu, L.;  Du, Y.;  Gao, L.;  Di, M.;  Zhang, N.;  Pan, Y.;  Yan, X.;  An, B.; He, G., Nanoscale Solid Superacid-Coupled Polybenzimidazole Membrane with High Ion Selectivity for Flow Batteries. ACS Sustainable Chem. Eng. 2020.
[22] Chen, D.;  Qi, H.;  Sun, T.;  Yan, C.;  He, Y.;  Kang, C.;  Yuan, Z.; Li, X., Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications. J. Membr. Sci. 2019, 586, 202-210.
[23] Xi, J.;  Li, Z.;  Yu, L.;  Yin, B.;  Wang, L.;  Liu, L.;  Qiu, X.; Chen, L., Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J. Power Sources 2015, 285, 195-204.
[24] Ye, J.;  Cheng, Y.;  Sun, L.;  Ding, M.;  Wu, C.;  Yuan, D.;  Zhao, X.;  Xiang, C.; Jia, C., A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J. Membr. Sci. 2019, 572, 110-118.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号