基于PVDF-co-HFP制备具有阻酸性能的交联型阴离子交换膜的研究
作者:薛上峰,徐格婷,祁志福,董 隽,刘春红,高强生,沈江南
单位: 1.浙江浙能技术研究院有限公司,杭州 311121;2.浙江工业大学化工学院,杭州,310014;3. 浙江省工业新水源工程中心,杭州 311121;
关键词: 酸浓缩;阴离子交换膜;PVDF-co-HFP;电渗析
出版年,卷(期):页码: 2023,43(2):68-79

摘要:
 传统阴离子交换膜在电渗析酸浓缩过程中存在着严重的氢离子泄露。在此,我们采用PVDF-co-HFP作为聚合物主链,乙烯基咪唑作为功能基团,通过不同刚柔性交联剂的加入制备了系列交联型阻酸阴离子交换膜AEM-x(x=1,2,3)并研究了阻酸膜与传统阴离子交换膜在酸浓缩过程中的不同。通过红外等表征手段证实了所制备膜的理化性质。在电渗析过程中,AEM-x相较于普通的阴离子交换膜AHA具有更好的阻酸性能,其酸浓缩6 h后H+浓度分别为0.64 M,0.68 M和0.74 M均大于AHA(0.49 M)。特别地,AEM-3具有更好的酸浓缩性能,这表明了更稳定的交联结构有利于膜结构的稳定性,从而使得膜具有更好的阻酸性能。研究结果表明,所制备的交联型阴离子交换膜在酸浓缩领域具有广阔的应用前景。
The traditional anion exchange membrane has serious proton leakage during the acid concentration process of electrodialysis. Here, we used PVDF-co-HFP as the polymer backbone and vinylimidazole as the functional group to prepare a series of cross-linked acid-blocking anion-exchange membranes AEM-x (x= 1, 2, 3) and studied the difference between the acid-blocking membrane and the traditional anion-exchange membrane in the acid concentration process. The physical and chemical properties of the prepared membranes were confirmed by infrared and other characterization methods.In the process of electrodialysis, AEM-x has better acid-blocking performance than the traditional anion exchange membrane AHA, H+ concentration after acid concentration for 6 h is 0.64 M, 0.68 M and 0.74 M, which are higher than those of AHA (0.49 M respectively). In particular, AEM-3 has better acid concentration performance. It indicates that the more stable cross-linked structure is beneficial to the stability of the membrane structure making the membrane have better acid blocking performance. The research results imply that the prepared cross-linked anion exchange membrane has broad application prospects in the field of acid concentration. 
薛上峰(1999-),男,浙江温州人,本科,助理工程师,研究方向为电厂化学环保,E-mail:1205717670@qq.com

参考文献:
 [1] 亦舒,刘秀丽.中国废水排放量预测研究[J].环境科学与管理, 2014, 39(3): 5—7.
[2] 袁加巧,柏少军,毕云霄,等.国内外矿山酸性废水治理与综合利用研究进展[J].有色金属工程, 2022, 12(04): 131—139.
[3] 李文博,冯启言,李 泽,等.矿山酸性废水抑酸技术研究现状与展望[J].中国矿业, 2021, 30(12): 8—14.
[4] Cheng C, Yang Z, Pan J, et al. Facile and cost effective PVA based hybrid membrane fabrication for acid recovery[J]. Sep Purif Technol, 2014, 136(5): 250—257.
[5] Chatterjee U, Bhadja V, Jewrajka S K. Effect of phase separation and adsorbed water on power consumption and current efficiency of terpolymer conetwork-based anion exchange membrane[J]. J Mater Chem A, 2014, 38(2): 16124—16134.
[6] Pal S, Mondal R, Guha S, et al. Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery[J]. J Membr Sci, 2020, 162(15): 118459.
[7] Mondal R, Pal S, Chatterjee U. Alkylated imidazole moieties in a crosslinked anion exchange membrane facilitate acid recovery with high purity[J]. ACS Appl Polym Mater, 2021, 3(3): 1544—1554.
[8] 卢京敏,陈 庆.扩散渗析应用于石墨纯化废酸回收的研究[J].辽宁化工, 2021, 50(11): 1626—1629.
[9] 胡 明,房海霞,张 琦.废酸回收产生的酸性废水的回收利用[J].化工管理, 2019, 36: 53—54.
[10] 李海宇,宋卫锋.膜处理技术在废酸回收中的应用[J].膜科学与技术, 2016, 36(03): 136—141.
[11] 张玲玲.扩散渗析法从铜冶炼废酸中回收硫酸的研究[J].铜业工程, 2009, 3: 40—42.
[12] 秦松岩,方玉倩,赵立新.无机废酸分离回收技术研究进展[J].应用化工, 2021, 50(01): 204—209+216.
[13] 徐铜文.扩散渗析法回收工业酸性废液的研究进展[J].水处理技术, 2004, 30(2): 63—66.
[14] 李传润,王虎传,张 旭,等.扩散渗析法回收精氨酸生产中的盐酸[J].膜科学与技术, 2012, 32(04): 102—106.
[15] 张 莉,娄玉峰,张治磊,等.双极膜电渗析技术制备有机酸的应用进展[J].广州化工, 2022, 50(03): 15—20.
[16] Wang L, Li Z, Xu Z, et al. Proton blockage membrane with tertiary amine groups for concentration of sulfonic acid in electrodialysis[J]. J Membr Sci, 2018, 555(1): 78—87.
[17] Guo R, Wang B, Jia Y, et al. Development of acid block anion exchange membrane by structure design and its possible application in waste acid recovery[J]. Sep Purif Technol, 2017, 186(2): 188—196.
[18] Liao J, Chen Q, Pan N, et al. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysisp[J]. Sep Purif Technol, 2020, 242(1): 116793.
[19] Liao J, Ruan H, Gao X, et al. Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis[J]. J Membr Sci, 2021, 621(1): 118999.
[20] Peckham T J, Holdcroft S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes[J]. Adv Mater, 2010, 22(42): 4667—4690.
[21] Agmon N. The Grotthuss mechanism[J]. Chem Phys Lett, 1995, 244(5-6): 456—462.
[22] Kreuer K D, Rabenau A, Weppner W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors[J]. Angew Chem, 1982, 21(3): 208—209.
[23] Sharma P P, Yadav V, Rajput A, et al. 2-Acrylamido-2-methyl-1-propanesulfonic Acid Grafted Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Acid-/Oxidative-Resistant Cation Exchange for Membrane Electrolysis [J].ACS Appl Mater Interfaces, 2015, 7(51): 28524—28533.
[24] 郭 雲,李胄彦,王志伟.电化学膜分离技术在水处理中的研究进展[J].环境工程:1—23.
[25] 刘大庆,马建伟,陈韶娟.有机膜分离技术及其研究进展[J].产业用纺织品, 2021, 39(12): 1—6.
[26] Patnaik P, Mondal R, Sarkar S, et al. Proton exchange membrane from the blend of poly(vinylidene fluoride) and functional copolymer: Preparation, proton conductivity, methanol permeability, and stability[J]. Int J Hydrog Energy, 2022, 47(59): 41920—41931.
[27] Sharma P P, Yadav V, Rajput A, et al. Acid resistant PVDF based copolymer alkaline anion exchange membrane for acid recovery and electrodialytic water desalination[J]. J Membr Sci, 2018, 563(1): 561—570.
[28] F Liu, Zhu B, Xu Y, Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers[J]. Appl Surf Sci, 2006, 253(4): 2096—2101.
[29] Cai T, Yang W, Neoh K, et al. Poly(vinylidene fluoride) Membranes with Hyperbranched Antifouling and Antibacterial Polymer Brushes[J]. Ind Eng Chem Res, 2012, 51(49): 15962—15973.
[30] Chen Q, Luo J, Liao J, et al. Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance[J]. J Membr Sci, 2021, 641(1): 119860.
[31] Yu S, Qian H, Liao J, et al. Proton blockage PVDF-co-HFP based anion exchange membrane for sulfuric acid recovery in electrodialysis[J]. J Membr Sci, 2022, 653(5): 120510.
[32] Yadav V, Rathod N H, Sharma Jeet, et al. Long side-chain type partially cross-linked poly(vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis[J]. J Membr Sci, 2021, 622(15): 119034.
[33] Jheng L, Hsu S L, L B, et al. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells[J]. J Membr Sci, 2014, 460(15): 160—170.
[34] Anuj K.Singh, Sonu Kumar, et al. High performance cross-linked dehydro-halogenated poly (vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis[J]. Sep Purif Technol, 2020, 234: 116078.
[35] Bai T, Wang M, Zhang B, et al. Anion-exchange membrane with ion-nanochannels to beat trade-off between membrane conductivity and acid blocking performance for waste acid reclamation[J]. J Membr Sci, 2019,573: 657—667.
[36] 马晓姣. 新型阴离子交换膜的制备及其反电渗析性能研究[D]. 浙江: 浙江工业大学, 2017.
[37] Zeng Q, Liu Q, Broadwell I, Zhu A, et al. Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells[J]. J Membr Sci, 2010, 349(1-2): 237—243.
[38] Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268—288.
[39] Campione A, Gurreri L, Ciofalo M, et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121—160.
[40] 高 兴. 交联结构离子交换膜的制备及电渗析性能研究[D]. 浙江: 浙江工业大学, 2021.
[41] Liu Y, Pan Q, Wang Y, et al. In-situ crosslinking of anion exchange membrane bearing unsaturated moieties for electrodialysis[J]. Sep Purif Technol, 2015, 156(2): 226—233.
[42] Cong M, Jia Y, Wang H, et al. Preparation of acid block anion exchange membrane with quaternary ammonium groups by homogeneous amination for electrodialysis-based acid enrichment[J]. Sep Purif Technol, 2020, 238: 116396.
[43] Bai T, Wang M, Jia Y, et al. Preparation of self-crosslinking anion exchange membrane with acid block performance from side-chain type polysulfone[J]. J Membr Sci, 2020, 599: 117831.
[44] Wang L, Li Z, Xu Z, et al. Proton blockage membrane with tertiary amine groups for concentration of sulfonic acid in electrodialysis[J]. J Membr Sci, 2018, 555: 78—87.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号