膜器结构对纳滤膜过滤性能的影响
作者:章鹏兴, 陈志, 曾凡苏, 曹蕾, 李建明
单位: 四川大学 化学工程学院,成都 610065
关键词: 纳滤膜;流道结构;过滤性能
出版年,卷(期):页码: 2012,32(3):28-33

摘要:
旨在通过使用自行设计的平板式纳滤膜组件以及商品膜片进行实验,考察三种不同的膜器流道结构对纳滤膜过滤性能,如通量Jv、表观截留率Robs的影响。三种流道膜器系统(螺旋流道、蛇形流道、无绕流流道)的实验结果表明,在实验条件范围内、相同操作条件下,浓差极化程度对通量有很大的影响。由于二次流对浓差极化层的扰动作用,螺旋流道膜器的通量最大,蛇形流道膜器的次之,无绕流流道膜器的最小。当膜面错流为层流时,螺旋流道膜器的通量接近蛇形流道膜器的2倍;湍流时由于二次流扰动相对较弱,前者的通量约为后者的1.6倍。对于表观截留率而言,流道结构和通量对其影响均较大。层流时无绕流流道膜器对Mg2+的表观截留率最大,可达到94.2%,而螺旋流道膜器的表观截留率高于蛇形流道膜器的值;湍流时由于螺旋流道中二次流的影响减弱,蛇形流道膜器的Mg2+的表观截留率高于螺旋流道膜器的表观截留率,最大为97.1%。
 In order to investigate the effects of the three kinds of membrane module’s structures on the NF separation, such as permeate flux and observed rejection, three self-designed flat-plate NF membrane modules and a kind of commercial nanofiltration membrane were used to carry out the experiments. It is shown, from the experimental results of three kinds of membrane module systems (the spiral flow type, the serpentine flow type and the normal flow type), that at the same operating condition, permeate flux is strongly affected by the concentration polarization on the membrane surface, and the flux of the spiral flow module is the largest due to the disturbance of the secondary flows to the concentration polarization, then is that of the serpentine flow module, and follows by that of the normal flow module. When the flow is laminar, the permeate flux of the spiral flow module is about 2 times greater than that of the serpentine flow module. When the flow is turbulent, the permeate flux of the former is about 1.6 times larger than that of the latter. It is also shown that the structures of the membrane module and the permeate flux have great influence on the solute rejection. When the flow is laminar, the Mg2+ rejection of the normal flow module is the greatest, say, up to 94.2%, and that of the spiral flow module is larger than that of the serpentine flow module. When the flow is turbulent, the Mg2+ rejection of the latter is greater than that of the former, e.g. up to 97.1%, for the effect of the secondary flow on the concentration polarization becomes relatively weaker.
章鹏兴(1986-),男,江西余干人,四川大学在读硕士研究生。 通讯联系人:E-mail:lijianming@scu.edu.cn

参考文献:
[1]王志,甄寒菲,王世昌,伍登熙. 膜过程中防治膜污染强化渗透通量技术进展 (Ⅰ)操作策略[J]. 膜科学与技术, 1999,(01) .
[2]伍艳辉, 王志, 伍登熙, 等. 膜过程中防治膜污染强化渗透通量技术进展(Ⅱ)膜组件及膜系统的结构设计[J]. 膜科学与技术, 1999,(04)
[3]Renkin E M. Filtration, diffusion and molecular sieving through porous cellulose membranes. J Gen Physiol, 1954, 38: 225~ 232.
[4]戴干策,任德呈,范自晖.传递现象导论[M].北京:化学工业出版社,1996.
[5]E•L•柯斯乐.扩散流体系统中的传质[M].北京:化学工业出版社,2002:144.
[6]钢制管法兰、垫片、紧固件HGJ44~76-91.北京: 1991.
[7]黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2001:180.
[8]黄卫星,李建明,肖泽仪.工程流体力学[M].北京:化学工业出版社,2009:31.
[9]彭辉.操作因素对纳滤膜分离性能的影响 [D].成都:四川大学,2005:30-43.
[10]Timmer J. M. K., Van der Horst H. C., Robberten T. Transport of lactic acid through reverse osmosis and nanofiltration membranes [J]. J Mebr Sci, 1993, 85 (1): 205-216.
[11]Dean W. R.. Fluid motion in a curved channel [J]. Proc Roy Soc A, 1928, 121: 402-420.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号