功能化TiO2纳米管改性聚偏氟乙烯杂化膜的结构与性能研究
作者:宋雪1,文晨1 ,孙炜1,肖长发2
单位: 1. 天津工业大学 环境与化学工程学院,天津300160);2. 膜材料与膜过程国家重点实验室培育基地,天津300160
关键词: TiO2纳米管;聚偏氟乙烯;杂化膜;亲水性;绿色清洗
出版年,卷(期):页码: 2012,32(4):11-16

摘要:
将功能化TiO2纳米管(FTNT)均匀分散在聚偏氟乙烯(PVDF)铸膜液中,利用相转化法制备PVDF/FTNT杂化膜,通过扫描电镜(SEM)、接触角测定、过滤实验和污染性测试等研究了其微结构、分离性和耐污染等,并考察了膜污染后有效的清洗方法.结果表明,添加FTNT的杂化膜具有不同的微结构与性能,当添加1% FTNT时,杂化膜皮层变薄、微孔数增多,并呈现出最优化的水通量、亲水性、耐压性和抗污染能力等,而对腐殖酸(HA)溶液的截留率略有提高.采用0.01mol/L的NaOH溶液碱洗和太阳光/水的清洗工艺均能实现膜性能的恢复,而采用后者清洗的杂化膜通量恢复率可达到90%以上.
The PVDF/FTNT hybrid ultrafiltration membranes were prepared by phase-inversion method with functionalized TiO2 nanotubes(FTNT) dispersed uniformly in the PVDF casting solution. The microstructure, separation performance and antifouling ability of such PVDF/FTNT hybrid membranes were investigated using SEM, contact angle, cross flow filtration, and antifouling measurements, and efficient cleaning methods for the fouled membrane were also observed in detail. The results indicate that the hybrid membranes exhibit differences in microstructure and properties due to a certain content of functionalized TiO2 nanotubes addition. At mass fraction 1% FTNT, the thickness of skin layer decreased while fine interfacial micropores increased, meanwhile the hybrid membrane had excellent water permeability, hydrophilicity, anticompaction and good antifouling ability with somewhat elevated retention for HA solution. In addition, chemical cleaning with 0.01mol/L NaOH and sunlight/water cleaning could effectively recover the permeance of membrane, and using the latter the flux recovery of hybrid membranes achieved above 90%.
宋雪(1987-10),女,湖北武汉人,硕士研究生,主要从事膜材料和水处理研究,E-mail:songxue1020@163.com

参考文献:
[1] Li J H, Xu Y Y, Zhu L P. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance [J]. J Membr Sci, 2009, 326: 659–666.
[2] Su J O, Nowon K, Yong T L. Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement [J]. J Membr Sci, 2009, 345: 13–20.
[3] Hou W X, Wang Q H. UV-Driven Reversible Switching of a Polystyrene/Titania Nanocomposite Coating between Superhydrophobicity and Superhydrophilicity [J]. Langmuir, 2009, 25: 6875–6879.
[4] Arthanareeswarana G, Thanikaivelan P. Fabrication of cellulose acetate–zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis [J]. Sep Purif Technol, 2010, 74: 230–235.
[5] Shen J N, Ruan H M, Wu L G, et al. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment [J]. Chem Eng J, 2011, 168: 1272–1278.
[6] 芦 艳,孟丽丽,于水利,等. 纳米Al2O3改性PVDF超滤膜处理含油污水研究[J]. 安全与环境学报,2008,8 (4):62–64.
[7] 孙丽华,李 星,杨艳玲,等. 浸没式超滤膜处理地表水的膜污染影响因素试验研究[J]. 给水排水,2009,35 (4):18–22.
[8] 周春飞,黄瑾辉,曾光明,等. 胶团强化超滤处理难降解有机污染物废水[J]. 膜科学与技术,2010,30 (5):113–118.
[9] Monique B, Burkhard L, Long D N. Membrane fouling and chemical cleaning in water recycling applications [J]. Desalination, 2010, 250: 977–981.
[10] Celik E, Park H, Choi H. Carbon nanotube blended polyethersulfone membranes or fouling control in water treatment [J]. Water Research, 2011, 45: 274–282.
[11] Tao F F, Gao C L, Wen Z H, et al. Cobalt oxide hollow microspheres with micro-and nano-scale composite structure: Fabrication and electrochemical performance [J]. J Solid State Chem, 2009, 182: 1055–1060.
[12] Hou Y N, Qu J H, Zhao X, et al. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode [J]. Science of the Total Environment, 2009, 407: 2431-2439.
[13] Wei Y, Chu H Q, Dong B Z, et al. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance [J]. Desalination, 2011, 272: 90–97.
[14] Mario M C, Jorge R S, Rodolfo Z. CO oxidation on gold nanoparticles supported over titanium oxide nanotubes [J]. Catalysis Today, 2011, 166: 172–179.
[15] Anandan S, Kathiravan K, Ikuma Y. Anionic(IO3-) non-metal doped TiO2 nanoparticles for the photocatalytic degradation of hazardous pollutant in water [J]. Catalysis Communications, 2009, 10: 1014–1019.
[16] Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling [J]. J Membr Sci, 2009, 342: 97–104.
[17] Astudillo C, Parra J, González S, et al. A new parameter for membrane cleaning evaluation [J]. Sep Purif Technol, 2010, 73: 286–293.
[18] Song S, Tu J J, He Z Q. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination [J]. Applied Catalysis A: General, 2010, 378: 169–174.
[19] Li J F, Xu Z L, Yang H. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane [J]. Appl Surf Sci, 2009, 255: 4725–4732.
[20] Mansourpanah Y, Madaeni S S, Rahimpour A, et al. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photocatalyst: performance, characterization and fouling-resistant capability [J]. J Membr Sci, 2009, 330: 297–306.
[21] Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry,structure and fouling performance of PES ultrafiltration membranes [J]. J Membr Sci, 2011, 378: 73–84.
[22] Wu G P, Gan S Y, Cui L G, et al. Preparation and Characterization of PES/TiO2 composite membranes [J]. Appl Surf Sci, 2008, 254: 7080–7086.
[23] Laine J M, Campos C, Baudin I. Understanding membrane fouling: a review of over a decade of research [J]. Water Sci Technol, 2003, 3: 155–164.
[24] Syafei A D, Lin C F, Wu C H. Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation [J]. J Colloid Interface Sci, 2008, 323: 112–119.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号