PEG分子量对PVB超滤膜结构和性能的影响
作者:沈建平,吴起影,郎万中,郭亚军
单位: 上海师范大学 上海市稀土功能材料重点实验室,教育部资源化学重点实验室,上海 200234
关键词: 聚乙二醇;聚乙烯醇缩丁醛;超滤膜
出版年,卷(期):页码: 2013,33(5):48-53

摘要:
用聚乙烯醇缩丁醛(PVB)作为本体材料,以N-甲基-2-吡咯烷酮(NMP)为溶剂,以4种不同分子量(分别是2000,6000,10000,20000)的聚乙二醇(PEG)为添加剂,用浸没沉淀相转化法制备超滤膜。研究了PEG分子量对成膜凝胶动力学和膜性能的影响。利用扫描电镜(SEM)观察PVB膜的形貌,并对膜的性能,包括纯水通量、截留率、孔隙率等进行了研究。结果表明膜上孔的数目和大小都随着PEG分子量的增大而增大。当PEG分子量从2000增大到20000时,膜的纯水通量首先由62.8L•m-2•h-1增大到104L•m-2•h-1,然后又降到50.1L•m-2•h-1。另外,随着PEG分子量的增大,膜的耐污染性逐渐变差,而孔隙率逐渐增大。
Poly(vinyl butyral) (PVB) ultrafiltration(UF) membranes were prepared by immerged phase-inversion process. N-methyl-2-pyrrolidone (NMP) was used as solvent. Polyethylene glycol (PEG) of four different molecular weights were used as the polymeric additives. The effects of the molecular weight of PEG on the precipitation kinetics and performances of membranes were investigated. The morphologies of membranes were analyzed by scanning electron microscope(SEM) and performances of membranes were evaluated in terms of pure water flux(PWF), protein rejection, porosity. The results showed that with the increase in molecular weight of PEG, the pore number as well as pore size in membranes increases. With increase in molecular weight of PEG from 2000 to 20000, the PWF first increases from 62.8 L•m-2•h-1 to 104 L•m-2•h-1 then decreases to 50.1 L•m-2•h-1. Furthermore, the anti-fouling property of PVB membranes becomes worse but the porosity increases with the molecular weight of PEG increasing.
 
沈建平(1989-),男,福建莆田人,研究生,主要研究方向:膜分离. E-mail: ipqjpshen@126.com 通讯联系人:郎万中,E-mail: wzlang@shnu.edu.cn

参考文献:
[1] Shen F,Lu X,Bian X,et al. Preparation and hydrophilicity study of poly(vinyl butyral)-based ultrafiltration membranes[J]. J Membr Sci,2005,265:74- 84.
[2] 李国东,张毅. 聚乙烯醇缩丁醛树脂的研究与应用[J]. 中国胶黏剂,2006,15 (6):27- 35.
[3] Fu X Y,Matsuyama H,Teramoto M,et al. Preparation of hydrophilic poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation[J]. Sep Purif Technol,2005,45:200- 207.
[4] 沈飞,陆晓峰,卞晓锴,等. 聚乙烯醇缩丁醛超滤膜的制备[J]. 膜科学与技术,2005,25(6):59- 63.
[5] Peng Y L,Sui Y. Compatibility research on PVC/PVB blended membranes[J]. Desalination,2006,196:13- 21.
[6] 赵梓年,张楠. PVC/PVB共混超滤膜性能研究及应用[J]. 天津科技大学学报,2007,22(3):36- 39.
[7] 隋燕,彭跃莲,钱英. 聚氯乙烯共混超滤膜的研究[J]. 膜科学与技术,2005,25(3):30- 33.
[8] Yan L,Wang J. Development of a new polymer membrane—PVB/PVDF blended membrane[J]. Desalination,2011,281:455- 461.
[9] 严丽,王军. PVB-PVDF共混膜的制备及其性能的研究[J]. 水处理技术,2011,37(12):28- 31.
[10] Zhang P Y,Wang Y L,Xu Z L,et al. Preparation of poly(vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive[J]. Desalination,2011,278:186- 193.
[11] Nakane K,Kurita T,Ogihara T,et al. Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol-gel process[J]. Composites: Part B,2004,35:219- 222.
[12] 李海东,程凤梅,王宇明,等. PVB/纳米TiO2复合材料的制备和表征[J]. 中国塑料,2006,20(6):32- 35.
[13] Qiu Y R,Matsuyama H,Gao G Y,et al. Effects of diluent molecular weight on the performance of hydrophilic poly(vinyl butyral)/pluronic F127 blend hollow fiber membrane via thermally induced phase separation[J]. J Membr Sci,2009,338:128- 134.
[14] Zheng Q Z,Wang P,Yang Y N,et al. Rheogical and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process[J]. J Membr Sci,2006,279:230- 237.
[15] Lang W Z,Xu Z L,Yang H,et al. Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane [J]. J Membra Sci,2007,288:123- 131.
[16] J Pieracc,J V Crivello,G Belfort. Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling[J]. J Membr Sci,1999,156:223- 240.
[17] H Chen,G Belfort. Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma induced graft polymerization[J]. J Appl Polym Sci,1999,72:1699- 1711.
[18] M Menon,A L Zydney. Measurement of protein charge and ion binding using capillary electrophoresis[J]. Anal Chem,1998,70:1581- 1584.
[19] Zhao Y H,Zhu B K,Kong L,et al. Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending wih amphiphilic hyperbranched-stra polymer. Langmuir,2007,23:5779- 5786.
[20] Zhao W,Su Y,Li C,et al. Fabrication of antifouling polyethersulfone ultrafiltration membrane using Pluronic F127 as both surface modifier and pore-forming agent[J]. J Membr Sci,2008,138:405- 412.
[21] 任玉立,陈少镇. 硝化纤维素浓溶液体系的溶解性与表观粘度[J]. 兵工学报,1985,2(1):51- 54.
[22] 欧阳伟,邱运仁. 聚乙烯醇缩丁醛/聚乙二醇体系的流变性能[J]. 高分子材料科学与工程,2012,26 (12):92- 94.
[23] Kim J H,Lee K H. Effect of PEG additive on membrane formation by phase inversion[J]. J Membr Sci,1998,138:153- 163.
[24] 刘强,孟范平,姚瑞华,等. 添加剂聚乙二醇对壳聚糖超滤膜结构和性能的影响[J]. 膜科学与技术,2010,30 (1):24- 29.
[25] Ying P,Gin G,Tao Z. Competitive adsorption of collagen and bovine serum albumin-effect of the surface wettability[J]. Colloids Surf,B:Biointerfaces,2004,33:259- 263.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号