基于水溶性稀释剂复合相分离法制备聚乳酸分离膜的研究
作者:杨山港,叶卉,张玉忠,赵莉芝,单体美,李泓
单位: 天津工业大学 材料科学与工程学院; 中空纤维膜材料与膜过程省部共建国家重点实验室培育基地(天津工业大学),天津 300387
关键词: 聚乳酸分离膜;复合相分离;生物可降解;水溶性稀释剂;
出版年,卷(期):页码: 2014,34(6):28-34

摘要:
本文以可降解聚乳酸为膜材料,采用水溶性稀释剂二甲基亚砜(DMSO),实现了复合相分离法制备结构可调控的聚乳酸分离膜。重点考察了铸膜液温度和凝固浴温度对其结构及渗透性能的影响。结果表明,当凝固浴温度接近浊点温度时,相分离过程中主要以NIPs过程为主,形成了指状孔和大空腔结构,聚乳酸分离膜的纯水通量较小;牛血清蛋白的截留率较高。当凝固浴温度低于浊点温度时,体系发生TIPs和NIPs复合相分离过程,制备的聚乳酸分离膜具有双连续和指状孔结构,聚乳酸分离膜纯水通量较大,牛血清蛋白的截留率略有降低,但都在66%以上。当铸膜液温度接近浊点温度时,体系发生TIPs和NIPs复合相分离过程,制备的聚乳酸膜具有多孔的表面膜结构,表面膜孔与支撑层之间的连通性较高;随着铸膜液温度的增加,膜表面孔径减小,聚乳酸分离膜纯水通量降低,由610 L/(h•m2)降低至27.6 L/(h•m2);牛血清蛋白截留率增加,由61%提高至 84%。
In this paper, based on water-solubility diluent (DMSO), biodegradable poly (lactic acid) membrane was prepared via complex phase separation. The effect of coagulation bath temperature, casting solution temperature as important factors on structure and performance of membrane were investigated. The results showed that when coagulation bath temperature was near to cloud point temperature, the effect of NIPs was dominating. The prepared membranes possess the structure of fingerlike pores and macrovoids with low flux and high the retentions of BSA. When coagulation bath temperature was lower than cloud point temperature, complex phase separation occurred in the phase separation process. The prepared membranes possess the structure of fingerlike pores and interconnected bicontinuous structure with high water flux and lower the retentions of BSA. The retentions of BSA was above 66% .When casting solution temperature was near to cloud point temperature, complex phase separation occurred in the phase separation process. The prepared membranes possess porous skin layer, good connectivity between membrane pores and support layer. With the increase of casting solution temperature, the  membrane pore size decreased and the water flux  decreased sharply from 610 L/(h•m2)to 27.6 L/(h•m2). The retentions of BSA  increased from 61%to 84%.
杨山港(1987—),男,天津市宝坻人,在读硕士研究生,师从张玉忠教授,主要从事聚乳酸分离膜的制备研究;

参考文献:
[1]Abed M R, Kumbharkar S C, Groth A M, et al. Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique[J]. Journal of Membrane Science, 2012, 407: 145-154.
[2]Peng J, Su Y, Chen W, et al. Effects of coagulation bath temperature on the separation performance and antifouling property of poly (ether sulfone) ultrafiltration membranes[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4858-4864.
[3]Yen C, He H, Lee L J, et al. Synthesis and characterization of nanoporous polycaprolactone membranes via thermally-and nonsolvent-induced phase separations for biomedical device application[J]. Journal of Membrane Science, 2009, 343(1): 180-188.
[4]Liu M, Wei Y M, Xu Z L, et al. Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system[J]. Journal of Membrane Science, 2013,437:169-178
[5]逯志平, 吕晓龙, 武春瑞, 等. 低温热致相分离法制备聚偏氟乙烯中空纤维多孔膜的研究[J]. 膜科学与技术, 2012, 32(1): 12-17.
[6]Cha B J, Yang J M. Preparation of poly (vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process[J]. Journal of membrane science, 2007, 291(1): 191-198.
[7]Matsuyama H, Takida Y, Maki T, et al. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation[J]. Polymer, 2002, 43(19): 5243-5248.
[8]Moriya A, Maruyama T, Ohmukai Y, et al. Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods[J]. Journal of Membrane Science, 2009, 342(1): 307-312.
[9]Tanaka T, Nishimoto T, Tsukamoto K, et al. Formation of depth filter microfiltration membranes of poly (l-lactic acid) via phase separation[J]. Journal of Membrane Science, 2012, 396: 101-109.
[10]Gross R A, Kalra B. Biodegradable polymers for the environment[J]. Science, 2002, 297(5582): 803-807.
[11]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007.1-18
[12]Tanaka T, Lloyd D R. Formation of poly (L-lactic acid) microfiltration    membranes via thermally induced phase separation[J]. Journal of membrane science, 2004, 238(1): 65-73.
[13]T.Tanaka, D.R.Lloyd. Formation of poly(l-lactic acid)microfiltration membranes via thermallyinduced phase Separation with Drying.[J].Jouranal of Chemical Engineering of Japan,2011,44(7),465-475.
[14]刘瑞来, 康晓燕, 刘俊劭. 水蒸气辅助法构筑图案化蜂窝状多孔膜[J]. 德州学院学报, 2012, 28(2): 53-62.
[15]王歆, 涂松, 陈元维, 等. 聚乳酸非对称膜的制备及其成骨细胞亲和性[J]. 功能材料, 2011, 42(5): 775-777.
[16]高爱林, 刘富, 薛立新. 生物基聚乳酸微孔膜的制备及透析性能[J]. 膜科学与技术, 2013, 33(4): 28-34.
[17]Chakrabarty B, Ghoshal A K, Purkait M K. Effect of molecular weight of PEG on membrane morphology and transport properties[J]. Journal of Membrane Science, 2008, 309(1): 209-221.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号