海水淡化反渗透膜微生物污染及防控研究进展
作者:郑猛,吴青芸,周浩媛,胡云霞
单位: 中国科学院烟台海岸带研究所,山东省环境工程研究中心,中国科学院海岸带环境过程与生态修复重点实验室
关键词: 海水淡化;反渗透膜;微生物污染;表征手段;防控方法
出版年,卷(期):页码: 2015,35(1):123-130

摘要:
随着反渗透技术在海水淡化及废水处理等方面的应用推广,反渗透膜污染问题显得越来越突出,尤其是不可逆的微生物污染,现已成为一个世界性难题。本文基于反渗透膜微生物污染的研究现状及进展,总结归纳微生物污染过程中三个关键阶段包括微生物粘附、生长和扩散的形成特点,发生机制及其影响因素;全面论述微生物污染膜的表面评价方法及膜性能评价方法如水利参数评价等的优缺点;针对微生物污染膜形成的不同生长阶段分别提出相应的防控策略如预处理、水利运行参数调控、反渗透膜的改性及清洗等;最后提出分离膜微生物污染研究的发展方向。
Membrane fouling gains more and more attentions, upon the increasing applications of reverse osmosis membrane technology in desalination and wastewater treatment. Particularly, membrane biofouling has been a global issue due to its fatal damage and its irreversibility.     Through comprehensive summary of the current research progress of membrane biofouling, this review discusses the membrane biofouling characteristics, mechanism and key factors influencing the three stages of biofilm formation such as adhesion, growth and proliferation of microorganism; Then, the biofilm characterization techniques are discussed to investigate the fouled membrane surface and performance such as hydraulic parameter monitor; From the perspective of different characteristics at three stages of biofilm formation process, the corresponding prevention strategies are summarized to control the biofouling including pretreatment, hydraulic parameter control, membrane modification and cleaning. Finally, the future research is proposed to study the membrane biofouling.
郑猛(1986—),男,山东胶州人,博士研究生,研究方向: 膜微生物污染,E-mail:mzheng@yic.ac.cn.

参考文献:
 [1] Azis P K A, Al-Tisan I, Sasikumar N. Biofouling potential and environmental factors of seawater at a desalination plant intake. [J] Desalination, 2001, 135(1-3): 69-82.
[2] Khan M T, de O Manes C-L, Aubry C, et al. Kinetic study of seawater reverse osmosis membrane fouling. [J] Environmental science & technology, 2013, 47(19): 10884-94.
[3] Sogin M L, Morrison H G, Huber J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere". [J] Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12115-12120.
[4] Matin A, Khan Z, Zaidi S M J, et al. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. [J] Desalination, 2011, 281: 1-16.
[5] Al-Juboori R A, Yusaf T. Biofouling in RO system: Mechanisms, monitoring and controlling. [J] Desalination, 2012, 302: 1-23.
[6] Kang S T, Subramani A, Hoek E M V, et al. Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. [J] Journal of Membrane Science, 2004, 244(1-2): 151-165.
[7] Hori K, Matsumoto S. Bacterial adhesion: From mechanism to control. [J] Biochemical Engineering Journal, 2010, 48(3): 424-434.
[8] Marshall K C. adhesion of marine-bacteria - a citation-classic commentary on mechanism of the initial events in the sorption of marine-bacteria to surfaces by marshall,k.c., stout,r., and mitchell,r. [J] Current Contents/Agriculture Biology & Environmental Sciences, 1992, (2): 8-8.
[9] Vanoss C J. energetics of cell cell and cell bio-polymer interactions. [J] Cell Biophysics, 1989, 14(1): 1-16.
[10] Vanoss C J. acid-base interfacial interactions in aqueous-media. [J] Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1993, 78: 1-49.
[11] Bos R, van der Mei H C, Busscher H J. Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. [J] Fems Microbiology Reviews, 1999, 23(2): 179-230.
[12] Absolom D R, Lamberti F V, Policova Z, et al. surface thermodynamics of bacterial adhesion. [J] Applied and Environmental Microbiology, 1983, 46(1): 90-97.
[13] An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. [J] Journal of Biomedical Materials Research, 1998, 43(3): 338-348.
[14] Ramsey M M, Whiteley M. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. [J] Molecular Microbiology, 2004, 53(4): 1075-1087.
[15] Flemming H C, Wingender J, Moritz R, et al., Physico-chemical properties of biofilms - A short review, in Biofilms in the Aquatic Environment, C.W. Keevil, et al., Editors. 1999. p. 1-12.
[16] Nielsen P H, Jahn A, Palmgren R. Conceptual model for production and composition of exopolymers in biofilms. [J] Water Science and Technology, 1997, 36(1): 11-19.
[17] Flemming H C, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs) - Part II: Technical aspects. [J] Water Science and Technology, 2001, 43(6): 9-16.
[18] Flemming H C, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. [J] Water Science and Technology, 2001, 43(6): 1-8.
[19] Herzberg M, Kang S, Elimelech M. Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes. [J] Environmental Science & Technology, 2009, 43(12): 4393-4398.
[20] Vandevivere P, Kirchman D L. attachment stimulates exopolysaccharide synthesis by a bacterium. [J] applied and environmental microbiology, 1993, 59(10): 3280-3286.
[21] Yildiz F H, Schoolnik G K. Vibrio cholerae O1 El Tor: Identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. [J] Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 4028-4033.
[22] Romeo T. When the party is over: A signal for dispersal of Pseudomonas aeruginosa biofilms. [J] Journal of Bacteriology, 2006, 188(21): 7325-7327.
[23] Davies D G, Marques C N H. A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms. [J] Journal of Bacteriology, 2009, 191(5): 1393-1403.
[24] Sauer K, Cullen M C, Rickard A H, et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. [J] Journal of Bacteriology, 2004, 186(21): 7312-7326.
[25] Uppuluri P, Chaturvedi A K, Srinivasan A, et al. Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. [J] Plos Pathogens, 2010, 6(3).
[26] Kim S, Lee S, Hong S, et al. Biofouling of reverse osmosis membranes: Microbial quorum sensing and fouling propensity. [J] Desalination, 2009, 247(1-3): 303-315.
[27] Khan M M T, Stewart P S, Moll D J, et al. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. [J] Biofouling, 2011, 27(2): 173-183.
[28] Wisniewski N, Moussy F, Reichert W M. Characterization of implantable biosensor membrane biofouling. [J] Fresenius Journal of Analytical Chemistry, 2000, 366(6-7): 611-621.
[29] Ridgway H F, Rigby M G, Argo D G. adhesion of a mycobacterium sp to cellulose diacetate membranes used in reverse-osmosis. [J] Applied and Environmental Microbiology, 1984, 47(1): 61-67.
[30] Wolf G, Crespo J G, Reis M A M. Optical and spectroscopic methods for biofilm examination and monitoring. [J] Re/Views in Environmental Science and Bio/Technology, 2002, 1(3): 227-251.
[31] Lazarova V, Manem J. biofilm characterization and activity analysis in water and waste-water treatment. [J] Water Research, 1995, 29(10): 2227-2245.
[32] Janknecht P, Melo L F. Online biofilm monitoring. [J] Reviews in Environmental Science and Bio/Technology, 2003, 2(2-4): 269-283.
[33] Eighmy T T, Maratea D, Bishop P L. electron-microscopic examination of wastewater biofilm formation and structural components. [J] Applied and Environmental Microbiology, 1983, 45(6): 1921-1931.
[34] Wolfaardt G M, Lawrence J R, Robarts R D, et al. multicellular organization in a degradative biofilm community. [J] Applied and Environmental Microbiology, 1994, 60(2): 434-446.
[35] Wagner M, Ivleva N P, Haisch C, et al. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS - Matrix. [J] Water Research, 2009, 43(1): 63-76.
[36] Yoon H, Baek Y, Yu J, et al. Biofouling occurrence process and its control in the forward osmosis. [J] Desalination, 2013, 325: 30-36.
[37] Huertas E, Herzberg M, Oron G, et al. Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes. [J] Journal of Membrane Science, 2008, 318(1-2): 264-270.
[38] McFeters G A, Yu F P, Pyle B H, et al. physiological methods to study biofilm disinfection. [J] Journal of Industrial Microbiology, 1995, 15(4): 333-338.
[39] Khan M M T, Stewart P S, Moll D J, et al. Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system. [J] Journal of Membrane Science, 2010, 349(1-2): 429-437.
[40] Al-Juboori R A, Yusaf T, Aravinthan V. Investigating the efficiency of thermosonication for controlling biofouling in batch membrane systems. [J] Desalination, 2012, 286: 349-357.
[41] Stoodley P, Wilson S, Hall-Stoodley L, et al. Growth and detachment of cell clusters from mature mixed-species biofilms. [J] Applied and Environmental Microbiology, 2001, 67(12): 5608-5613.
[42] Nivens D E, Palmer R J, White D C. continuous nondestructive monitoring of microbial biofilms - a review of analytical techniques. [J] Journal of Industrial Microbiology, 1995, 15(4): 263-276.
[43] Herzberg M, Elimelech M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. [J] Journal of Membrane Science, 2007, 295(1-2): 11-20.
 [44] Vrouwenvelder J S, van Paassen J A M, Kruithof J C, et al. Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection. [J] Journal of Membrane Science, 2009, 338(1-2): 92-99.
[45] Kang S, Choi H. Effect of surface hydrophobicity on the adhesion of S-cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. [J] Colloids and Surfaces B-Biointerfaces, 2005, 46(2): 70-77.
[46] Koop H M, Valentijnbenz M, Amerongen A V N, et al. aggregation of 27 oral bacteria by human whole saliva - influence of culture-medium, calcium, and bacterial-cell concentration, and interference by autoaggregation. [J] Antonie Van Leeuwenhoek Journal of Microbiology, 1989, 55(3): 277-290.
[47] Ahmad T, Danish M, Rafatullah M, et al. The use of date palm as a potential adsorbent for wastewater treatment: a review. [J] Environmental Science and Pollution Research, 2012, 19(5): 1464-1484.
[48] Bhatnagar A, Hogland W, Marques M, et al. An overview of the modification methods of activated carbon for its water treatment applications. [J] Chemical Engineering Journal, 2013, 219: 499-511.
[49] Lu C, Liu R, Fan F, et al. Research progress of phosphorus removal by inorganic adsorbent. [J] Applied Chemical Industry, 2012, 41(8): 1422-1425.
[50] Ersahin M E, Ozgun H, Dereli R K, et al. A review on dynamic membrane filtration: Materials, applications and future perspectives. [J] Bioresource Technology, 2012, 122: 196-206.
[51] Chua K T, Hawlader M N A, Malek A. Pretreatment of seawater: Results of pilot trials in Singapore. [J] Desalination, 2003, 159(3): 225-243.
[52] Bukhari Z, Hargy T M, Bolton J R, et al. Medium-pressure UV for oocyst inactivation. [J] Journal American Water Works Association, 1999, 91(3): 86-94.
[53] Harris G D, Adams V D, Sorensen D L, et al. ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. [J] Water Research, 1987, 21(6): 687-692.
[54] Gomez M, de la Rua A, Garralon G, et al. Urban wastewater disinfection by filtration technologies. [J] Desalination, 2006, 190(1-3): 16-28.
[55] Vedavyasan C V. Pretreatment trends - an overview. [J] Desalination, 2007, 203(1-3): 296-299.
[56] Applegate L E, Erkenbrecher C W, Winters H. new chloramine process to control aftergrowth and biofouling in permasepr b-10 ro surface seawater plants. [J] Desalination, 1989, 74(1-3): 51-67.
[57] Svecevicius G, Syvokiene J, Stasiunaite P, et al. Acute and chronic toxicity of chlorine dioxide (ClO2) and chlorite (ClO2-) to rainbow trout (Oncorhynchus mykiss). [J] Environmental Science and Pollution Research, 2005, 12(5): 302-305.
[58] Bartels C R, Wilf M, Andes K, et al. Design considerations for wastewater treatment by reverse osmosis. [J] Water Science and Technology, 2005, 51(6-7): 473-482.
[59] Petrucci G, Rosellini M. Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks. [J] Desalination, 2005, 182(1-3): 283-291.
[60] Sorlini S, Collivignarelli C. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. [J] Desalination, 2005, 176(1-3): 103-111.
[61] Hong S K, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. [J] Journal of Membrane Science, 1997, 132(2): 159-181.
[62] Flemming H-C, Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions, in Biofilm Highlights, H.C. Flemming, J. Wingender, and U. Szewzyk, Editors. 2011. p. 81-109.
[63] Kristensen J B, Meyer R L, Laursen B S, et al. Antifouling enzymes and the biochemistry of marine settlement. [J] Biotechnology Advances, 2008, 26(5): 471-481.
[64] Webb J S, Thompson L S, James S, et al. Cell death in Pseudomonas aeruginosa biofilm development. [J] Journal of Bacteriology, 2003, 185(15): 4585-4592.
[65] Ponnusamy K, Paul D, Kweon J H. Inhibition of Quorum Sensing Mechanism and Aeromonas hydrophila Biofilm Formation by Vanillin. [J] Environmental Engineering Science, 2009, 26(8): 1359-1363.
[66] Paul D, Kim Y S, Ponnusamy K, et al. Application of Quorum Quenching to Inhibit Biofilm Formation. [J] Environmental Engineering Science, 2009, 26(8): 1319-1324.
[67] Akbari A, Hamadanian M, Jabbari V, et al. Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes. [J] Desalination and Water Treatment, 2012, 46(1-3): 96-106.
[68] Wilbert M C, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes. [J] Desalination, 1998, 115(1): 15-32.
[69] Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment: A review. [J] Water Research, 2012, 46(3): 584-600.
[70] Rana D, Matsuura T. Surface Modifications for Antifouling Membranes. [J] Chemical Reviews, 2010, 110(4): 2448-2471.
[71] Varin K J, Lin N H, Cohen Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. [J] Journal of Membrane Science, 2013, 446: 472-481.
[72] Nikkola J, Liu X, Li Y, et al. Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance. [J] Journal of Membrane Science, 2013, 444: 192-200.
[73] Xu J, Wang Z, Yu L, et al. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. [J] Journal of Membrane Science, 2013, 435: 80-91.
[74] Kang G, Yu H, Liu Z, et al. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly (ethylene glycol) derivatives. [J] Desalination, 2011, 275(1): 252-259.
[75] Gelover S, Gomez L A, Reyes K, et al. A practical demonstration of water disinfection using TiO2 films and sunlight. [J] Water Research, 2006, 40(17): 3274-3280.
[76] Yang H-L, Lin J C-T, Huang C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. [J] Water Research, 2009, 43(15): 3777-3786.
[77] Lee H, Amy G, Cho J W, et al. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. [J] Water Research, 2001, 35(14): 3301-3308.
[78] Kwak S Y, Kim S H, Kim S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. [J] Environmental Science & Technology, 2001, 35(11): 2388-2394.
[79] Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. [J] Water Research, 2009, 43(3): 715-723.
[80] Cornelissen E R, Vrouwenvelder J S, Heijman S G J, et al. Periodic air/water cleaning for control of biofouling in spiral wound membrane elements. [J] Journal of Membrane Science, 2007, 287(1): 94-101.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号