溶剂挥发法制备聚醚共聚酰胺/乙二醇苯醚凝胶膜及其CO2/N2分离性能研究
作者:顾瑾,张鹏,白云翔,张春芳,孙余凭
单位: 江南大学 食品胶体与生物技术教育部重点实验室 化学与材料工程学院
关键词: 凝胶膜;乙二醇苯醚;气体分离
出版年,卷(期):页码: 2015,35(5):58-63

摘要:
 本文通过溶剂挥发法成功制备了具有高渗透高选择性的聚醚共聚酰胺/乙二醇苯醚(PEBA/EPH)凝胶膜,并研究了EPH含量对凝胶膜理化性质以及气体渗透选择性能的影响。结果表明,PEBA/EPH凝胶膜具有良好的机械性能,EPH的加入使得膜密度上升,相对结晶度降低。随着凝胶膜中EPH含量的增加,CO2渗透系数以及CO2/N2理想选择性均显著提高,当EPH含量为60 wt%时,凝胶膜的CO2渗透系数增加到352.96 barrer,同时CO2/N2理想选择性增加到85.67。
 
 High permeability and selectivity PEBA/EPH gel membranes were prepared by solvent evaporation method. The effect of EPH content on the microstructure, properties and performance of these gel membranes was discussed. Added by EPH, a favorable mechanical property of PEBA/EPH gel membranes was showed with an obvious increase of membrane density and a decrease of relative crystallinity. The increase of EPH content leaded to a significant increase in permeability coefficients of CO2 and the ideal selectivity of CO2/N2. When the EPH content increased to 60 wt%, the CO2 permeability improved to 352.96 barrer and the ideal selectivity of CO2/N2 reached to 85.67.
 
顾瑾(1972-),女,教授,研究方向为气体分离膜

参考文献:
 [1]Mondal M K, Balsora H K, Varshney P. Progress and trends in CO2 capture/ separation technologies: A review[J]. Energy, 2012, 46(1): 431-441.
[2]张亚涛, 范立海, 张林, 等. 膜技术去除密闭空间中CO2的研究进展[J]. 化学工程, 2009, 37(4):75-78.
[3]Shalu, Chaurasia S K, Singh R K, et al. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4] [J]. Journal of Physical Chemistry B, 2013, 117(3): 897-906.
[4]刘洋, 刘晶, 常明, 等. CO2在金属有机骨架材料有机链上的吸附机理研究[J]. 工程热物理学报, 2012, 33(1): 171-174.
[5]Rabiee H, Soltanieh M, Mousavi S A, et al. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes[J]. Journal of Membrane Science, 2014, 469: 43-58.
[6]Xenopoulos A, Wunderlich B. Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides[J]. Journal of Polymer Science. Part B: Polymer Physics, 1990, 28(12): 2271-2290.
[7]Car A, Stropnik C, Yave W, et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation[J]. Journal of Membrane Science, 2008, 307(1): 88-95.
[8]Jae H K, Seong Y H, Young M L. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer[J]. Journal of Membrane Science, 2001, 190(2):179-193.
[9]Zoppoi R A, Soares C G A. Hybrids of poly(ethylene oxide-b-amide-6) and ZrO2 sol-gel: preparation, characterization, and application in processes of membranes separation[J]. Advances in Polymer Technology, 2002, 21 (2): 2–16.
[10]Bondar V I, Freeman B D, Pinnau I. Gas Transport Properties of Poly(ether-b-amide) Segmented Block Copolymers[J]. Journal of Polymer Science: Part B: Polymer Physics, 2000, 38 (15): 2051–2062.
[11]Yave W, Car A, Peinemann K V. Nanostructured membrane material designed for carbon dioxide separation[J]. Journal of Membrane Science, 2010, 350 (1-2): 124-129.
[12]Hong S U, Park D, Ko Y, et al. Polymer-ionic liquid gels for enhanced gas transport[J]. Chemical Communications, 2009, 46: 7227-7229.
[13]冯世超, 任吉中, 任晓灵, 等. 聚醚共聚酰胺/聚乙二醇共混膜的制备及其气体渗透性能的研究[J]. 膜科学与技术, 2012, 32(5): 27-33.
[14]Bernardo P, Jansen J C, Bazzarelli F, et al. Gas transport properties of Pebax/room temperature ionic liquid gel membranes[J]. Separation and Purification Technology, 2012, 97(1): 73-82.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号