HPAN/PEI-PDMS有机溶剂纳滤复合膜的制备与性能研究
作者:吴晓莉,王景涛,张浩勤,张翔,刘金盾
单位: 郑州大学 化工与能源学院,郑州 450001
关键词: 聚丙烯腈;水解;聚乙烯亚胺;界面聚合;有机溶剂纳滤
出版年,卷(期):页码: 2016,36(2):13-19

摘要:
本文结合杂化和交联技术,用均苯三甲酰氯(TMC)共价交联的聚乙烯亚胺(PEI)和羟基封端的聚二甲基硅氧烷(PDMS)制备活性层,并以聚丙烯腈(PAN)膜做支撑层,采用界面聚合法制备有机溶剂纳滤复合膜。为增强支撑层与活性层间的界面相互作用,采用NaOH溶液对PAN基膜水解。通过改变NaOH溶液的浓度调控PAN基膜的水解程度,考察不同水解程度对复合膜的物化特性及纳滤性能的影响。通过红外光谱、扫描电镜、静态接触角、拉伸、面积溶胀和溶剂吸附等表征手段系统研究了复合膜的微观结构和物化特性。以异丙醇、乙酸乙酯、丁酮和正庚烷做溶剂,以聚乙二醇(PEG)做溶质进行复合膜的有机溶剂纳滤实验。结果发现,随着PAN基膜水解度的提高,其表面生成的-COOH量增多,进而会增强复合膜的亲水性,并提高基膜与活性层之间的界面相互作用,增强复合膜的机械稳定性。与水解前相比,基膜水解后所制备的复合膜,其通量和截留率均有提高,同时表现出优越的抗溶胀性能和长时操作稳定性。相比而言,NaOH溶液处理浓度为2.0 mol/L时复合膜综合性能最优,其对异丙醇的渗透率达3.46 L m-2 h-1 bar-1,且保持较高的截留率(81.8%)。
A series of composite membranes were fabricated by combining the advantages of hybridization and cross-linking techniques for solvent resistent nanofiltration. Polyethyleneimine (PEI) and hydroxyl terminated trifluoride polydimethylsiloxane (PDMS) were covalently cross-linked with trimesoyl chloride(TMC)through interfacial polymerization to generate the active layer on top of the polyacrylonitrile (PAN) ultrafiltration membrane. For enhancing the interfacial compatibility between support layer and active layer, PAN was hydrolyzed by sodium hydroxide prior to the polymerization. The hydrolysis degree of the HPAN support was tuned by the NaOH concentration, and the influence of hydrolysis degree on the physico-chemical properties and nanofiltration performances of the composite membrane was investigated in detail. The composite membranes were investigated via Fourier transform infrared spectroscopy, scanning electron microscope, static contact angle measurement, tensile testing, area swelling, and solvent uptake. The nanofiltration experiment of the composite membrane was carried out using n-heptane, butanone, ethyl acetate, and isopropanol as organic solvents, as well as polyethylene glycol 1000 as solute. It was found that with the increase of hydrolysis degree, the -COOH amount on HPAN support layer increased, which would improve the membrane hydrophilcity and strength the interfacial interactions. Consequently, the mechanical stability of the composite membrane was enhanced. The hydrolysis of the PAN support elevated the solvent flux and rejection of the composite membrane, and meanwhile attained excellent solvent resistance and potential long-term operation stability. In particular, when the concentration of NaOH was 2.0 mol L-1, the composite membrane had the acceptable solvent permeance for isopropanol (up to 3.46 L m-2 h-1 bar-1) and remained the high rejection for PEG 1000 (up to 81.8 %).
吴晓莉(1990-),女,河南信阳人,硕士研究生,从事有机溶剂纳滤方面的研究,E-mail:love_wuxiaoli@126.com. 通讯作者,E-mail:jingtaowang@zzu.edu.cn

参考文献:
 [1] Vandezande P, Gevers L E M, Vankelecom I F J. Solvent resistant nanofiltration: separating on a molecular level[J]. J Membr Sci, 2008, 37(2): 365-405.
[2] 李焦丽, 奚西峰, 李旭祥. 聚矾/聚丙烯酰胺合金膜及其在有机溶剂回收中的应用[J]. 膜科学与技术, 2002, 22(5): 32-35.
[3] Cheng X Q, Zhang, Y L, Wang, Z X. Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes[J]. Adv. Polym. Tech, 2014,33(1): 1-5.
[4] Dutczak S M, Cuperus F P, Wessling M, et al. New crosslinking method of polyamide-imide membranes for potential application in harsh polar aprotic solvents[J]. Sep Purif Technol, 2013,102: 142-146.
[5] Minhas F T, Memon S, Bhanger M I, et al. Solvent resistant thin film composite nanofiltration membrane: Characterization and permeation study[J]. Appl Surf Sci, 2013, 282: 887-897.
[6] Aburabie J, Neelakanda P, Karunakaran M, et al. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)[J]. React Funct Polym, 2015, 86: 225-232.
[7] 何桂华. 聚砜中空纤维超滤膜在油田注入水处理中的应用[J]. 膜科学与技术,1998, 18(2): 17-21.
[8] Ma X H, Xu Z L, Ji, C Q, et al. Characterization, Separation Performance, and Model Analysis of STPP-Chitosan/PAN Polyelectrolyte Complex Membranes[J]. J Appl Polym Sci, 2011, 120(2): 1017-1024.
[9] Zhang H Q, Mao H, Wang J T, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine-nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. J Membr Sci, 2014, 470: 70-79.
[10] Dalwani M, Benes N E, Bargeman G, et al. Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes[J]. J Membr Sci, 2011, 372(1): 228-238.
[11] Adout A, Kang S, Asatekin A, et al. Ultrafiltration Membranes Incorporating Amphiphilic Comb Copolymer Additives Prevent Irreversible Adhesion of Bacteria[J]. Environ Sci Technol, 2010, 44(7): 2406-2411.
[12] Lee K P, Zheng J, Bargeman G, et al. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation[J]. J Membr Sci, 2015, 478:754-84.
[13] Dutczak S M, Luiten-Olieman M W J, Zwijnenberg H J, et al. Composite capillary membrane for solvent resistant nanofiltration[J]. J Membr Sci, 2011, 372(1): 182-190.
[14] Solomon M F J, Bhole Y, Livingston A G. High flux membranes for organic solvent nano?ltration (OSN)-Interfacial polymerization with solvent activation[J]. J Membr Sci, 2013, 434: 193–203.
[15] Marchetti P, Butte A, Livingston A G. NF in organic solvent/water mixtures: Role of preferential solvation[J]. J Membr Sci, 2013, 444: 101-115.
[16] 刘昌胜, 邬行彦, 潘德维, 等. 膜的污染及其清洗[J]. 膜科学与技术,1996, 16(2):26-30.
[17] 刘忠洲, 张国俊, 纪树兰. 研究浓差极化和膜污染过程的方法与策略[J]. 膜科学与技术, 2006, 26(5): 1-15.
[18] Agnieszka K, Ho?da, Ben A, et al. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes[J]. J Membr Sci, 2013, 442: 196-205.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号