杂萘联苯共聚醚砜复合正渗透膜的制备和性能
作者:刘鹏,张守海,王涛,丁蓉,王榛麟,蹇锡高
单位: 大连理工大学化工学院高分子材料系,辽宁省高性能树脂工程技术研究中心,辽宁省高分子科学与工程重点实验室,辽宁 大连,116024
关键词: 杂萘联苯共聚醚砜;正渗透;中空纤维;复合膜;界面聚合
出版年,卷(期):页码: 2016,36(4):7-13

摘要:
 以杂萘联苯共聚醚砜(PPBES)为膜材料制备中空纤维基膜,然后通过界面聚合方法在基膜内腔制备出一种新型聚酰胺复合正渗透中空纤维膜。分别考察了铸膜液组分和界面聚合工艺对复合正渗透膜结构和性能的影响。铸膜液中添加乙二醇会改变PPBES中空纤维基膜的结构和性能。PPBES基膜的结构和性能会影响聚酰胺活性层形貌和复合正渗透膜性能。间苯二胺(MPD)浓度会改变聚酰胺活性层的表面形貌,进而影响复合正渗透膜的性能。随着MPD浓度从0.5%升高到2%,复合膜水通量和盐水比都呈现快速下降趋势,但MPD浓度超过2%时,复合正渗透膜性能变化较小。随着原料液温度从25℃升高到80℃,正渗透膜水通量从20.3 L/m2h快速升高到34.0 L/m2h,而盐水比变化较小。新型PPBES复合正渗透中空纤维膜展现出较好的耐热稳定性。
 Copoly(phthalazinone biphenyl ether sulfone) (PPBES) polymer were used as the membrane materials for the fabrication of hollow fiber substrate membranes. Novel polyamide composite forward osmosis (FO) hollow fiber membranes were fabricated via interfacial polymerization method on the lumen side of the substrate membranes. Effect of casting solution compositions and interfacial polymerization preparation techniques on the morphologies and performance of composite FO membranes was investigated, respectively. The addition of glycol in the casting solution changed the structures and performance of PPBES hollow fiber substrate membranes. The structures and performance of PPBES substrate membranes affected the morphologies of polyamide active layer and the performance of composite FO membranes. The surface morphologies of the polyamide active layer were altered with the change of MPD concentrations, which could affect the performance of composite FO membranes. The water flux and Js/Jv ratio of composite membranes decreased significantly when MPD concentration varied from 0.5% to 2%, and then changed slightly when the MPD concentration exceeded 2%. The water flux of FO membranes improved significantly from 20.3 L/m2h to 34.0 L/m2h without significant changes of Js/Jv ratio when the feed solution temperature increased from 25 °C to 80 °C. The novel composite FO membrane exhibited good thermal stability.
作者简介:刘鹏 (1987—),男,山东省日照市人,博士研究生,主要从事正渗透膜材料的研究. * 通讯联系人:张守海教授zhangshh@dlut.edu.cn;蹇锡高教授jian4616@dlut.edu.cn。

参考文献:
[1] 胡群辉,邹昊,姜莹,等.正渗透膜分离关键技术及其应用进展[J].膜科学与技术,2014, 34(5):109-115.
[2] Ghaffour N, Missimer T M, Amy G L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability[J]. Desalination, 2013, 309: 197-207.
[3] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[4] Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: opportunities and challenges[J]. Journal of Membrane Science, 2012, 396: 1-21.
[5] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1): 34-39.
[6] Zhang X, Ning Z, Wang D K, et al. Processing municipal wastewaters by forward osmosis using CTA membrane[J]. Journal of Membrane Science, 2014, 468: 269-275.
[7] Cui Y, Ge Q, Liu X Y, et al. Novel forward osmosis process to effectively remove heavy metal ions[J]. Journal of Membrane Science, 2014, 467: 188-194.
[8] Mondal P, Tran A T K, Van der Bruggen B. Removal of As (V) from simulated groundwater using forward osmosis: Effect of competing and coexisting solutes[J]. Desalination, 2014, 348: 33-38.
[9] Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1): 70-87.
[10] Wang K Y, Chung T S, Qin J J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process[J]. Journal of Membrane Science, 2007, 300(s 1–2):6-12.
[11] Li X, Wang K Y, Helmer B, et al. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039-10050.
[12] Shi L, Chou S R, Wang R, et al. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2011, 382(1): 116-123.
[13] Klaysom C, Hermans S, Gahlaut A, et al. Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation[J]. Journal of Membrane Science, 2013, 445: 25-33.
[14] 张守海,蹇锡高.杂萘联苯聚芳醚功能膜的研究进展[J].高分子通报,2011,9:1-12.
[15] Liu P, Zhang S, Wang Y, et al. Preparation and characterization of thermally stable copoly(phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes[J]. Applied Surface Science, 2015, 335: 189-197.
[16] Han R, Zhang S, Hu L, et al. Preparation and characterization of thermally stable poly(piperazine amide)/PPBES composite nanofiltration membrane[J]. Journal of Membrane Science, 2011, 370:91-96. 
[17] Chou S, Shi L, Wang R, et al. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane[J]. Desalination, 2010, 261(3): 365-372.
[18] Han R, Zhang S, Jian X. Effect of additives on the performance and morphology of copoly(phthalazinone ether sulfone) UF membrane[J]. Desalination, 2012, 290: 67-73.
[19] Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. Journal of Membrane Science, 2011, 367(1): 340-352.
[20] Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of membrane science, 2005, 251(1): 67-79.
[21] Xie M, Price W E, Nghiem L D, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. Journal of Membrane Science, 2013, 438: 57–64.
[22] Phuntsho S, Vigneswaran S, Kandasamy J, et al. Influence of temperature and temperature difference in the performance of forward osmosis desalination process[J]. Journal of Membrane Science, 2012, 415–416: 734–744.
[23] You S J, Wang X H, Zhong M, et al. Temperature as a factor affecting transmembrane water flux in forward osmosis: Steady-state modeling and experimental validation[J]. Chemical Engineering Journal, 2012, 198–199: 52–60.
[24] Fang W, Wang R, Chou S, et al. Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization[J]. Journal of Membrane Science, 2012, 394-395:140–150.
[25] Rong W, Lei S, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2010, 355(1–2):158–167.
[26] 李刚, 王周为, 李春霞,等. 界面聚合中空纤维正渗透膜的制备和表征[J]. 化工学报, 2014, 65(8):3082-3088.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号