厌氧膜生物反应器污水处理技术的研究现状与发展前景
作者:许颖,夏俊林,黄霞
单位: 清华大学环境学院环境模拟与污染控制国家重点联合实验室; 清华大学(环境学院)-北京碧水源科技股份有限公司环境膜技术研发中心,北京 100084
关键词: 厌氧膜生物反应器;污水处理;运行效果;膜污染
出版年,卷(期):页码: 2016,36(4):139-149

摘要:
 厌氧膜生物反应器(AnMBR)具有能够实现净产能、出水水质优良、剩余污泥产量低等优点,近年来成为研究焦点。自2006年相关研究数量呈逐年上升的趋势,尤其近五年增加迅速,其中有关城市污水处理的文献约占68%。本文综述了AnMBR典型工艺的类型、运行效果以及影响因素、膜污染影响因素以及控制手段等方面的研究进展,分析了AnMBR大规模应用的经济性。提出该工艺进一步发展所面临的挑战,同时指出未来AnMBR在城市污水处理以及工业废水处理应用中的发展方向。
 Anaerobic membrane bioreactor (AnMBR) technology is currently being considered as an attractive option for wastewater treatment due to the significant advantages over conventional anaerobic treatment and aerobic membrane bioreactor (MBR) technology, including net energy producer, good effluent quality and low sludge production. The number of research literatures regarding AnMBR rapidly increased since 2006, especially within recent five years, which mainly focused on municipal wastewater treatment (~68%).The review summarized the various types of AnMBR processes for municipal wastewater and industrial wastewater treatment. The study status related to operation performance of typical AnMBR processes, the impact factors on membrane fouling and the relative membrane fouling control methods, and the economic feasibility were critically discussed. In addition, the several challenges for the further development of AnMBR technology were also pointed. Finally, the prospects regarding to its widespread both on municipal and industrial wastewater treatment were presented. 
第一作者简介:许颖(1985-),女,山东青岛人,博士,目前在清华大学环境学院博士后流动站进行研究工作,主要从事膜技术污水处理中的应用领域的研究。Email:xuying.qd@163.com

参考文献:
 [1] McCarty P. L., Bae J., Kim J. Domestic wastewater treatment as a net energy producer--can this be achieved? Environ. Sci. Technol.[J]. 2011, 45: 7100-7106.
[2] Ozgun H., Dereli R. K., Ersahin M. E., et al. A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology[J]. 2013, 118: 89-104.
[3] Grethlein H. E. Anaerobic digestion and membrane separation of domestic wastewater. Journal of Water Pollution Control Federation[J]. 1978, 754-763.
[4] Lin H., Peng W., Zhang M., et al. A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination[J]. 2013, 314: 169-188.
[5] Kang XIAO Y. X., Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect. Front. Environ. Sci. Eng.[J]. 2014, 8.
[6] Skouteris G., Hermosilla D., López P., et al. Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal[J]. 2012, 198-199: 138-148.
[7] Stuckey D. C. Recent developments in anaerobic membrane reactors. Bioresource technology[J]. 2012, 122: 137-148.
[8] Shin C., McCarty P. L., Kim J., et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource technology[J]. 2014, 159: 95-103.
[9] Ramos C., Garcia A., Diez V. Performance of an AnMBR pilot plant treating high-strength lipid wastewater: biological and filtration processes. Water research[J]. 2014, 67: 203-215.
[10] Christian S., Grant S., McCarthy P., et al. " The First Two Years of Full-Scale Anaerobic Membrane Bioreactor (AnMBR) Operation Treating High-Strength Industrial Wastewater. Water Practice & Technology[J]. 2011, 6.
[11] Dereli R. K., Ersahin M. E., Ozgun H., et al. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource technology[J]. 2012, 122: 160-170.
[12] Martin-Garcia I., Monsalvo V., Pidou M., et al. Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal of Membrane Science[J]. 2011, 382: 41-49.
[13] Aslam M., McCarty P. L., Bae J., et al. The effect of fluidized media characteristics on membrane fouling and energy consumption in anaerobic fluidized membrane bioreactors. Separation and Purification Technology[J]. 2014, 132: 10-15.
[14] Xie Z., Wang Z., Wang Q., et al. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification. Bioresource technology[J]. 2014, 161: 29-39.
[15] Ersahin M. E., Ozgun H., Tao Y., et al. Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water research[J]. 2014, 48: 420-429.
[16] Alibardi L., Cossu R., Saleem M., et al. Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresource technology[J]. 2014, 161: 236-244.
[17] Kim J., Kim K., Ye H., et al. Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ. Sci. Technol.[J]. 2010, 45: 576-581.
[18] Wei C. H., Harb M., Amy G., et al. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment. Bioresource technology[J]. 2014, 166: 326-334.
[19] Smith A. L., Skerlos S. J., Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water research[J]. 2013, 47: 1655-1665.
[20] Ding A., Liang H., Qu F., et al. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process. Bioresource technology[J]. 2014, 171: 240-246.
[21] Gao D. W., Hu Q., Yao C., et al. Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresource technology[J]. 2014, 159: 193-198.
[22] Gao D.-W., Hu Q., Yao C., et al. Integrated anaerobic fluidized-bed membrane bioreactor for domestic wastewater treatment. Chemical Engineering Journal[J]. 2014, 240: 362-368.
[23] Buntner D., Spanjers H., van Lier J. B. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor. Water research[J]. 2014, 51: 284-292.
[24] Liu Y., Zhang K., Bakke R., et al. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance. Journal of bioscience and bioengineering[J]. 2013, 116: 357-361.
[25] Salazar-Peláez M. L., Morgan-Sagastume J. M., Noyola A. Influence of hydraulic retention time on fouling in a UASB coupled with an external ultrafiltration membrane treating synthetic municipal wastewater. Desalination[J]. 2011, 277: 164-170.
[26] Qiu G., Song Y., Zeng P., et al. Combination of upflow anaerobic sludge blanket (UASB) and membrane bioreactor (MBR) for berberine reduction from wastewater and the effects of berberine on bacterial community dynamics. Journal of hazardous materials[J]. 2013, 246-247: 34-43.
[27] Wang W., Yang Q., Zheng S., et al. Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment. Bioresource technology[J]. 2013, 149: 292-300.
[28] Zayen A., Mnif S., Aloui F., et al. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia. Journal of hazardous materials[J]. 2010, 177: 918-923.
[29] Buntner D., Sánchez A., Garrido J. M. Feasibility of combined UASB and MBR system in dairy wastewater treatment at ambient temperatures. Chemical Engineering Journal[J]. 2013, 230: 475-481.
[30] Wallace J. M., Safferman S. I. Anaerobic membrane bioreactors and the influence of space velocity and biomass concentration on methane production for liquid dairy manure. Biomass and Bioenergy[J]. 2014, 66: 143-150.
[31] Suneethi S., Joseph K. Autotrophic ammonia removal from landfill leachate in anaerobic membrane bioreactor. Environ Technol[J]. 2013, 34: 3161-3167.
[32] Kondusamy D., Kalamdhad A. S. Pre-treatment and anaerobic digestion of food waste for high rate methane production – A review. Journal of Environmental Chemical Engineering[J]. 2014, 2: 1821-1830.
[33] Padmasiri S. I., Zhang J., Fitch M., et al. Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water research[J]. 2007, 41: 134-144.
[34] Dutta K., Lee M. Y., Lai W. W., et al. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource technology[J]. 2014, 165: 42-49.
[35] Monsalvo V. M., McDonald J. A., Khan S. J., et al. Removal of trace organics by anaerobic membrane bioreactors. Water research[J]. 2014, 49: 103-112.
[36] Chen L., Gu Y., Cao C., et al. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water research[J]. 2014, 50: 114-123.
[37] Gimenez J. B., Marti N., Robles A., et al. Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water science and technology : a journal of the International Association on Water Pollution Research[J]. 2014, 69: 1581-1588.
[38] Jeison D., van Lier J. B. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux. Water research[J]. 2007, 41: 3868-3879.
[39] Gimenez J. B., Marti N., Ferrer J., et al. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Bioresource technology[J]. 2012, 118: 67-72.
[40] Lee I.-S., Rittmann B. E. Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge. Bioresource technology[J]. 2011, 102: 2542-2548.
[41] Robles A., Ruano M. V., Ribes J., et al. Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water research[J]. 2013, 47: 1277-1288.
[42] Robles A., Ruano M. V., Ribes J., et al. Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions. Separation and Purification Technology[J]. 2013, 104: 290-296.
[43] Martin Garcia I., Mokosch M., Soares A., et al. Impact on reactor configuration on the performance of anaerobic MBRs: treatment of settled sewage in temperate climates. Water research[J]. 2013, 47: 4853-4860.
[44] Martinez-Sosa D., Helmreich B., Netter T., et al. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource technology[J]. 2011, 102: 10377-10385.
[45] Smith A. L., Stadler L. B., Love N. G., et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresource technology[J]. 2012, 122: 149-159.
[46] Drews A. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of Membrane Science[J]. 2010, 363: 1-28.
[47] Lin H. J., Xie K., Mahendran B., et al. Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor. Journal of Membrane Science[J]. 2010, 361: 126-134.
[48] Charfi A., Ben Amar N., Harmand J. Analysis of fouling mechanisms in anaerobic membrane bioreactors. Water research[J]. 2012, 46: 2637-2650.
[49] Lin H., Liao B. Q., Chen J., et al. New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge. Bioresource technology[J]. 2011, 102: 2373-2379.
[50] Ding Y., Tian Y., Li Z., et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor. Bioresource technology[J]. 2015, 192: 105-114.
[51] Xiong Y., Harb M., Hong P.-Y. Characterization of biofoulants illustrates different membrane fouling mechanisms for aerobic and anaerobic membrane bioreactors. Separation and Purification Technology[J]. 2016, 157: 192-202.
[52] Huang X., Xiao K., Shen Y. Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering in China[J]. 2010, 4: 245-271.
[53] Li J.-H., Xu Y.-Y., Zhu L.-P., et al. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membrane Science[J]. 2009, 326: 659-666.
[54] 白玲, 刘超, 蓝伟光, et al. 浸没式双轴旋转厌氧膜生物反应器的膜污染机理研究. 膜科学与技术[J]. 2010, 30: 58-63.
[55] Gao W. J., Qu X., Leung K. T., et al. Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor. Journal of Membrane Science[J]. 2012, 421-422: 131-144.
[56] Berube P., Hall E., Sutton P. Parameters governing permeate flux in an anaerobic membrane bioreactor treating low-strength municipal wastewaters: a literature review. Water environment research[J]. 2006, 78: 887-896.
[57] Liu Y., Liu H., Cui L., et al. The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater. Desalination[J]. 2012, 297: 97-103.
[58] Herrera-Robledo M., Morgan-Sagastume J. M., Noyola A. Biofouling and pollutant removal during long-term operation of an anaerobic membrane bioreactor treating municipal wastewater. Biofouling[J]. 2010, 26: 23-30.
[59] Yeo H., Lee H. S. The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors. Environ Technol[J]. 2013, 34: 2105-2112.
[60] Dereli R. K., Heffernan B., Grelot A., et al. Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times. Separation and Purification Technology[J]. 2015, 139: 43-52.
[61] Dereli R. K., van der Zee F. P., Heffernan B., et al. Effect of sludge retention time on the biological performance of anaerobic membrane bioreactors treating corn-to-ethanol thin stillage with high lipid content. Water research[J]. 2014, 49: 453-464.
[62] Henze M., van Loosdrecht M. C., Ekama G. A., 污水生物处理——原理, 设计与模拟, 中国建筑工业出版社, 2011.
[63] Yoo R., Kim J., McCarty P. L., et al. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresource technology[J]. 2012, 120: 133-139.
[64] Diaz H., Azocar L., Torres A., et al. Use of flocculants for increasing permeate flux in anaerobic membrane bioreactors. Water science and technology : a journal of the International Association on Water Pollution Research[J]. 2014, 69: 2237-2242.
[65] Ng K. K., Shi X., Tang M. K. Y., et al. A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separation and Purification Technology[J]. 2014, 132: 634-643.
[66] Kim J., Shin J., Kim H., et al. Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor. Bioresource technology[J]. 2014, 172: 321-327.
[67] Cerón-Vivas A., Morgan-Sagastume J. M., Noyola A. Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors. Journal of Membrane Science[J]. 2012, 423-424: 136-142.
[68] Yu Z., Wen X., Xu M., et al. Characteristics of extracellular polymeric substances and bacterial communities in an anaerobic membrane bioreactor coupled with online ultrasound equipment. Bioresource technology[J]. 2012, 117: 333-340.
[69] Ramos C., Zecchino F., Ezquerra D., et al. Chemical cleaning of membranes from an anaerobic membrane bioreactor treating food industry wastewater. Journal of Membrane Science[J]. 2014, 458: 179-188.
[70] Lin H., Chen J., Wang F., et al. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination[J]. 2011, 280: 120-126.
[71] Pretel R., Robles A., Ruano M. V., et al. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource technology[J]. 2013, 149: 532-540.
[72] Smith A. L., Stadler L. B., Cao L., et al. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental science & technology[J]. 2014, 48: 5972-5981.
[73] O’Flaherty V., Collins G., Mahony T. The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Reviews in Environmental Science and Bio/Technology[J]. 2006, 5: 39-55.
[74] Lotti T., Kleerebezem R., van Erp Taalman Kip C., et al. Anammox growth on pretreated municipal wastewater. Environ. Sci. Technol.[J]. 2014, 48: 7874-7880.
[75] Castro-Barros C. M., Daelman M. R., Mampaey K. E., et al. Effect of aeration regime on N(2)O emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water research[J]. 2015, 68: 793-803.
[76] van der Star W. R., Miclea A. I., van Dongen U. G., et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng.[J]. 2008, 101: 286-294.
[77] Li Z., Xu X., Shao B., et al. Anammox granules formation and performance in a submerged anaerobic membrane bioreactor. Chemical Engineering Journal[J]. 2014, 254: 9-16.
[78] Li Z., Xu X., Xu X., et al. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling. Chemosphere[J]. 2014.
[79] Ruiz-Martinez A., Martin Garcia N., Romero I., et al. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresource technology[J]. 2012, 126: 247-253.
[80] Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology advances[J]. 2011, 29: 686-702.
[81] Kelly P. T., He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresource technology[J]. 2014, 153: 351-360.
[82] Zhang F., Li J., He Z. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system. Bioresource technology[J]. 2014, 166: 630-634.
[83] GE's latest membrane technology. Filtration + Separation[J]. 2014, 51: 11.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号