新型改性PVDF中空纤维膜直接分离模拟棕榈油废水的研究
作者:聂士超 ,周晓吉12,刘坤朋1,沈舒苏12,杨晶晶12,白仁碧12
单位: 1苏州科技学院分离净化材料与技术研发中心,2江苏高校水处理技术与材料协同创新中心,苏州市科锐路1号,邮编:215009
关键词: 改性PVDF中空纤维膜;模拟棕榈油废水;油水分离;操作条件;运行效果
出版年,卷(期):页码: 2016,36(5):16-23

摘要:
 本研究采用一种经亲水疏油改性的PVDF中空纤维膜对模拟棕榈油废水进行了直接油水分离的试验研究。研究表明:该种改性膜能耗低,适合在较低的压差范围(0.08-0.10 MPa)工作,在浓水回流量为初始通量的1.5倍情况下运行效果较佳,进液温度的提高有助于渗透通量的增加和通量衰减的降低,使用45 ℃的NaOH-SDS混合溶液可完全去除膜的不可逆污染。在进水油浓度从50 mg•L-1至高达100000 mg•L-1的试验范围,这种改性PVDF中空纤维膜对模拟棕榈油废水表现出良好的分离效果,出水TOC含量低于5 mg•L-1,两小时过滤通量衰减率为21.2%-59.0%,经清洗后膜通量恢复率接近100%。连续多周期运行的结果证明这种新型改性膜有效地克服了一般有机聚合物膜极易被油污染的缺陷,具有可以直接和较为广泛地用于油水分离应用的巨大潜力。
 Simulated palm oily wastewater was directly separated by a modified hollow fiber membrane with both hydrophilic and oleophobic surface properties. This research realized a low energy cost of the hollow fiber membrane who is suitable to work under a relative low operation pressure (0.08-0.10 MPa). A better results may be contained when the backflow was 1.5 times of the initial permeate flux. By increasing the feed temperature, the permeate flux was increased and the flux decay rate was decreased. It was found that 0.1wt% mixture of NaOH and SDS had superior effect for irreversible fouling 45 ℃. The modified hollow fiber membranes demonstrated an excellent performance in the separation of simulated plam oily wastewater from the low feed concentration of 50 mg•L-1 to an even high feed concentration of 1×105 mg•L-1, and the TOC values of all the pemeate were below 5 mg•L-1. The flux decay rate after 2 hours permeation were around 21.2% to 59.0%. Almost 100% flux recovery rate was achieved for the rinses. The polymer membranes are hard to be widely and directly applied into the separation of oily wastewater, because the membranes can be easily polluted by oils. However, such obstacles can be overcome by using the novel modified PVDF hollow fiber membrane.
作者简介:聂士超(1989-),男,辽宁葫芦岛市,硕士,就读于苏州科技学院,主要从事中空纤维膜处理含油水的应用研究,师承白仁碧教授。*通讯作者,E-mail:ceebairb@live.com

参考文献:
[1] Liew W L, Kassim M A, Muda K, et al. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review[J]. Journal of Environmental Management, 2015,149:222-235.
 [2] Latif A A, Ismail S, Bhatia S. Water recycling from palm oil mill effluent (POME) using membrane technology[J]. Desalination, 2003,157(1–3):87-95.
 [3] Neoh C H, Yahya A, Adnan R, et al. Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology[J]. Environmental Science and Pollution Research, 2013,20(5):2912-2923.
 [4] Chan Y J, Chong M F, Law C L. Optimization on thermophilic aerobic treatment of anaerobically digested palm oil mill effluent (POME)[J]. Biochemical Engineering Journal, 2011,55(3):193-198.
 [5] Liu D, Li D, Du D, et al. Antifouling PVDF membrane with hydrophilic surface of terry pile-like structure[J]. Journal of Membrane Science, 2015,493:243-251.
 [6] Zhang M, Nguyen Q T, Ping Z. Hydrophilic modification of poly (vinylidene fluoride) microporous membrane[J]. Journal of Membrane Science, 2009,327(1-2):78-86.
 [7] 毕秋艳, 田野, 李倩, 等. PVDF中空纤维膜改性研究(1)交联PVP制备亲水化PVDF中空纤维膜[J]. 膜科学与技术, 2012(06):22-27.
 [8] 汪帅, 李方, 李勇, 等. 采用聚合左旋多巴涂覆及MPEG-NH2接枝对PVDF膜亲水改性的研究[J]. 膜科学与技术, 2015(01):42-48.
 [9] Goosen M F A, Sablani S S, Al Hinai H, et al. Fouling of Reverse Osmosis and Ultrafiltration Membranes: A Critical Review[J]. Separation Science and Technology, 2005,39(10):2261-2297.
[10] Wu T Y, Mohammad A W, Md. Jahim J, et al. Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling[J]. Biochemical Engineering Journal, 2007,35(3):309-317.
[11] Zhu X Y, Loo H E, Bai R B. A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications[J]. Journal of Membrane Science, 2013,436(2):47-56.
[12] Zhu X Y, Tu W T, Wee K, et al. Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties[J]. Journal of Membrane Science, 2014,466(2014):36-44.
[13] Bai R B, Zhu X Y, A highly hydrophilic and highly oleophobic membrane for oil-water separation[P], WO 2012/148359 A1, 1 November 2012.
[14] 刘坤朋, 沈舒苏, 聂士超, 等. 亲水疏油改性聚偏氟乙烯膜用于油水分离的实验研究[J]. 水处理技术, 2015(06):36-42.
[15] 时钧等主编. 膜技术手册[M]. 北京: 化学工业出版社, 2001.
[16] 华耀祖. 超滤技术与应用[M]. 北京: 化学工业出版社, 2004.
[17] Salahi A, Gheshlaghi A, Mohammadi T, et al. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater[J]. Desalination, 2010,262(1-3):235-242.
[18] 许振良, 马炳荣. 微滤技术与应用[M]. 北京: 化学工业出版社, 2005.
[19] Abadi S R H, Sebzari M R, Hemati M, et al. Ceramic membrane performance in microfiltration of oily wastewater[J]. Desalination, 2011,265(1):222-228.
[20] Hwang K, Sz P. Filtration characteristics and membrane fouling in cross-flow microfiltration of BSA/dextran binary suspension[J]. Journal of Membrane Science, 2010,347(1-2):75-82.
[21] Shi X, Tal G, Hankins N P, et al. Fouling and cleaning of ultrafiltration membranes: A review[J]. Journal of Water Process Engineering, 2014,1:121-138.
[22] Mohammadi T, Esmaeelifar A. Wastewater treatment using ultrafiltration at a vegetable oil factory[J]. Desalination, 2004,166:329-337.
[23] Chakrabarty B, Ghoshal A K, Purkait M K. Cross-flow ultrafiltration of stable oil-in-water emulsion using polysulfone membranes[J]. Chemical Engineering Journal, 2010,165(2):447-456.
[24] Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011,278(1):157-164.
[25] Mahesh Kumar S, Madhu G M, Roy S. Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes[J]. Separation and Purification Technology, 2007,57(1):25-36.
[26] Peng H, Tremblay A Y. Membrane regeneration and filtration modeling in treating oily wastewaters[J]. Journal of Membrane Science, 2008,324(1):59-66.
[27] 章婧, 张小珍, 周健儿, 等. 油水乳液污染纳米TiO2改性Al2O3陶瓷膜的化学清洗[J]. 膜科学与技术, 2014(05):53-57.
[28] Zhang R, Shi W, Yu S, et al. Influence of salts, anion polyacrylamide and crude oil on nanofiltration membrane fouling during desalination process of polymer flooding produced water[J]. Desalination, 2015,373:27-37.
[29] 黄政伟, 李卫星, 邢卫红. PVDF-ZrO2复合中空纤维膜在乳化油废水中的应用[J]. 现代化工, 2012(z2):53-56.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号